用Mask-RCNN训练自定义大小的数据集

本文介绍了如何在使用Mask-RCNN训练自定义大小数据集时,修改源代码以适应不同尺寸的图像。针对Mask-RCNN要求输入图像尺寸一致的问题,提出了在train_shapes.ipynb中加载数据时自动获取图像尺寸并进行处理的方法,同时提供了处理不规则图像大小的Python代码参考链接。

         Mask-RCNN自动获取训练集中图像的长度和宽度,然后用于训练。

一、目前情况

用Mask-RCNN训练自己的数据集时,需要制定图片的长度和宽度,即

IMAGE_MIN_DIM = 448
IMAGE_MAX_DIM = 640

而在Mask_RCNN/mrcnn目录下model.py文件中第1815行到1819行代码

h, w = config.IMAGE_SHAPE[:2]
        if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):
            raise Exception("Image size must be dividable by 2 at least 6 times "
                            "to avoid fractions when downscaling and upscaling."
                            "For example, use 256, 320, 384, 448, 512, ... etc. ")

需要将图像处理成指定长宽比例的图像然后才可以用于训练,并且训练集中的图像需要长度和宽度都需一致。

若训练集中的图像有长度和宽度不同时则不能训练,这样极不方便。

二、更改Mask-RCNN代码

在训练数据集的代码train_shapes.ipynb中,在load_shapes()中添加更改代码:

for i in range(count):
            # 获取图片宽和高
            filestr = imglist[i].split(".")[0]
            mask_path = mask_floder + "/" + filestr + "
想要掌握使用Python和MASK-RCNN框架训练自定义数据集进行实例分割,并进行模型评估的完整流程,推荐参阅《Python与MASK-RCNN框架:自定义数据集任务训练指南》。这份资源将为你提供从数据集准备到模型训练,再到性能评估的详细步骤和实例。 参考资源链接:[Python与MASK-RCNN框架:自定义数据集任务训练指南](https://wenku.youkuaiyun.com/doc/2q2ofyd79o) 首先,数据集的准备至关重要。你需要收集并标注自己的图像数据集,确保每个图像对象都有对应的mask。这一步骤可能需要使用标注工具,如LabelMe,来创建精确的注释。之后,使用Python脚本来加载这些图像和mask,进行必要的数据预处理,如归一化和大小调整,并将它们转换为模型可以处理的格式,通常是NumPy数组。 其次,编写训练脚本时,你可以利用MASK-RCNN框架提供的高级API来定义模型结构,配置损失函数和优化器。例如,在Detectron2中,你可以使用其提供的配置文件来快速搭建模型,并通过命令行或Python代码启动训练过程。训练过程中,可能需要调整学习率、批大小和其他超参数来优化训练效果。 训练完成后,需要使用验证集或测试集对模型进行评估。评估指标可能包括精确度、召回率、mAP等。如果性能未达到预期,可能需要返回到数据处理或模型配置阶段进行调整。此外,还可以采用交叉验证等技术来确保模型的泛化能力。 最后,当模型表现令人满意时,就可以将其部署到实际应用中。这可能涉及将模型转换为适合生产环境的格式,如TensorFlow Lite模型,或者使用模型服务框架,如TorchServe,来提高模型的部署效率和灵活性。 以上步骤和建议都详细包含在《Python与MASK-RCNN框架:自定义数据集任务训练指南》中。通过阅读这份资料,你将能够全面了解从数据准备到模型部署的全过程,并掌握运用MASK-RCNN进行实例分割的核心技巧。 参考资源链接:[Python与MASK-RCNN框架:自定义数据集任务训练指南](https://wenku.youkuaiyun.com/doc/2q2ofyd79o)
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蹦跶的小羊羔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值