题目
分析
很显然的斜率优化,如果我们考虑忽略a那个限制的话,对于a的限制我们可以考虑cdq分治来做
代码
#include <bits/stdc++.h>
const int N = 1e6 + 10;
typedef long long ll;
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
struct Data
{
int v,id;
}a[N];
struct Note
{
int x,y;
}t[25][N];
void pre(int l,int r,int d)
{
if (l == r)
{
t[d][l].y = a[l].id;
t[d][l].x = l;
return;
}
int mid = (l + r) >> 1, i, j, k;
pre(l, mid, d + 1);
pre(mid + 1, r, d + 1);
for (i = k = l, j = mid + 1; i <= mid && j <= r; k++)
if (t[d + 1][i].y < t[d + 1][j].y)
t[d][k] = t[d + 1][i++];
else t[d][k] = t[d + 1][j++];
for (; i <= mid; t[d][k++] = t[d + 1][i++]);
for (; j <= r; t[d][k++] = t[d + 1][j++]);
}
bool operator < (Data a,Data b)
{
return a.v < b.v || a.v == b.v && a.id < b.id;
}
double Get(double k1,double b1,double k2,double b2)
{
return (b2 - b1) / (k1 - k2);
}
ll f[N];
ll x[N],y[N];
int Q[N];
void solve(int l,int r,int d)
{
if (l == r)
{
x[l] = a[l].id, y[l] = f[l] - 1ll * x[l] * x[l];
return ;
}
int mid = (l + r) >> 1;
solve(l, mid, d + 1);
int h = 1, tail = 0;
for (int i = l; i <= r; i++)
{
int j = t[d][i].x;
if (j <= mid)
{
for (; h < tail && Get(x[j], y[j], x[Q[tail - 1]], y[Q[tail - 1]]) <= Get(x[Q[tail - 1]], y[Q[tail - 1]], x[Q[tail]], y[Q[tail]]); tail--);
Q[++tail] = j;
}
else
{
for (; h < tail && Get(x[Q[h]], y[Q[h]], x[Q[h + 1]], y[Q[h + 1]]) <= a[j].id; h++);
if (h <= tail)
f[j] = std::max(f[j], a[j].v + 1ll * a[j].id * x[Q[h]] + y[Q[h]]);
}
}
solve(mid + 1, r, d + 1);
}
int main()
{
freopen("paint.in","r",stdin);
freopen("paint.out","w",stdout);
int n = read();
for (int i = 1; i <= n; i++)
a[i].v = read(), a[i].id = i;
std::sort(a + 1, a + n + 1);
pre(1,n,0);
for (int i = 1; i <= n; i++)
f[i] = a[i].v;
solve(1,n,0);
ll ans = 0;
for (int i = 1; i <= n; i++)
ans = std::max(ans, f[i] + 1ll * (n + 1 - a[i].id) * (a[i].id));
ans -= 1ll * n * (n + 1) / 2ll;
printf("%lld\n", ans);
}