File "/home/orin/lcz/dockerfile/qwen/Qwen2.5-VL-main/signal_api.py", line 25, in <module>
model.load_state_dict(torch.load('resnet18.pth', map_location='cpu'))
File "/home/orin/anaconda3/envs/minicpmo/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2593, in load_state_dict
raise RuntimeError(
RuntimeError: Error(s) in loading state_dict for ResNetForModulation:
Missing key(s) in state_dict: "resnet.conv1.weight", "resnet.bn1.weight", "resnet.bn1.bias", "resnet.bn1.running_mean", "resnet.bn1.running_var", "resnet.layer1.0.conv1.weight", "resnet.layer1.0.bn1.weight", "resnet.layer1.0.bn1.bias", "resnet.layer1.0.bn1.running_mean", "resnet.layer1.0.bn1.running_var", "resnet.layer1.0.conv2.weight", "resnet.layer1.0.bn2.weight", "resnet.layer1.0.bn2.bias", "resnet.layer1.0.bn2.running_mean", "resnet.layer1.0.bn2.running_var", "resnet.layer1.1.conv1.weight", "resnet.layer1.1.bn1.weight", "resnet.layer1.1.bn1.bias", "resnet.layer1.1.bn1.running_mean", "resnet.layer1.1.bn1.running_var", "resnet.layer1.1.conv2.weight", "resnet.layer1.1.bn2.weight", "resnet.layer1.1.bn2.bias", "resnet.layer1.1.bn2.running_mean", "resnet.layer1.1.bn2.running_var", "resnet.layer2.0.conv1.weight", "resnet.layer2.0.bn1.weight", "resnet.layer2.0.bn1.bias", "resnet.layer2.0.bn1.running_mean", "resnet.layer2.0.bn1.running_var", "resnet.layer2.0.conv2.weight", "resnet.layer2.0.bn2.weight", "resnet.layer2.0.bn2.bias", "resnet.layer2.0.bn2.running_mean", "resnet.layer2.0.bn2.running_var", "resnet.layer2.0.downsample.0.weight", "resnet.layer2.0.downsample.1.weight", "resnet.layer2.0.downsample.1.bias", "resnet.layer2.0.downsample.1.running_mean", "resnet.layer2.0.downsample.1.running_var", "resnet.layer2.1.conv1.weight", "resnet.layer2.1.bn1.weight", "resnet.layer2.1.bn1.bias", "resnet.layer2.1.bn1.running_mean", "resnet.layer2.1.bn1.running_var", "resnet.layer2.1.conv2.weight", "resnet.layer2.1.bn2.weight", "resnet.layer2.1.bn2.bias", "resnet.layer2.1.bn2.running_mean", "resnet.layer2.1.bn2.running_var", "resnet.layer3.0.conv1.weight", "resnet.layer3.0.bn1.weight", "resnet.layer3.0.bn1.bias", "resnet.layer3.0.bn1.running_mean", "resnet.layer3.0.bn1.running_var", "resnet.layer3.0.conv2.weight", "resnet.layer3.0.bn2.weight", "resnet.layer3.0.bn2.bias", "resnet.layer3.0.bn2.running_mean", "resnet.layer3.0.bn2.running_var", "resnet.layer3.0.downsample.0.weight", "resnet.layer3.0.downsample.1.weight", "resnet.layer3.0.downsample.1.bias", "resnet.layer3.0.downsample.1.running_mean", "resnet.layer3.0.downsample.1.running_var", "resnet.layer3.1.conv1.weight", "resnet.layer3.1.bn1.weight", "resnet.layer3.1.bn1.bias", "resnet.layer3.1.bn1.running_mean", "resnet.layer3.1.bn1.running_var", "resnet.layer3.1.conv2.weight", "resnet.layer3.1.bn2.weight", "resnet.layer3.1.bn2.bias", "resnet.layer3.1.bn2.running_mean", "resnet.layer3.1.bn2.running_var", "resnet.layer4.0.conv1.weight", "resnet.layer4.0.bn1.weight", "resnet.layer4.0.bn1.bias", "resnet.layer4.0.bn1.running_mean", "resnet.layer4.0.bn1.running_var", "resnet.layer4.0.conv2.weight", "resnet.layer4.0.bn2.weight", "resnet.layer4.0.bn2.bias", "resnet.layer4.0.bn2.running_mean", "resnet.layer4.0.bn2.running_var", "resnet.layer4.0.downsample.0.weight", "resnet.layer4.0.downsample.1.weight", "resnet.layer4.0.downsample.1.bias", "resnet.layer4.0.downsample.1.running_mean", "resnet.layer4.0.downsample.1.running_var", "resnet.layer4.1.conv1.weight", "resnet.layer4.1.bn1.weight", "resnet.layer4.1.bn1.bias", "resnet.layer4.1.bn1.running_mean", "resnet.layer4.1.bn1.running_var", "resnet.layer4.1.conv2.weight", "resnet.layer4.1.bn2.weight", "resnet.layer4.1.bn2.bias", "resnet.layer4.1.bn2.running_mean", "resnet.layer4.1.bn2.running_var", "resnet.fc.weight", "resnet.fc.bias".
Unexpected key(s) in state_dict: "conv1.weight", "bn1.running_mean", "bn1.running_var", "bn1.weight", "bn1.bias", "layer1.0.conv1.weight", "layer1.0.bn1.running_mean", "layer1.0.bn1.running_var", "layer1.0.bn1.weight", "layer1.0.bn1.bias", "layer1.0.conv2.weight", "layer1.0.bn2.running_mean", "layer1.0.bn2.running_var", "layer1.0.bn2.weight", "layer1.0.bn2.bias", "layer1.1.conv1.weight", "layer1.1.bn1.running_mean", "layer1.1.bn1.running_var", "layer1.1.bn1.weight", "layer1.1.bn1.bias", "layer1.1.conv2.weight", "layer1.1.bn2.running_mean", "layer1.1.bn2.running_var", "layer1.1.bn2.weight", "layer1.1.bn2.bias", "layer2.0.conv1.weight", "layer2.0.bn1.running_mean", "layer2.0.bn1.running_var", "layer2.0.bn1.weight", "layer2.0.bn1.bias", "layer2.0.conv2.weight", "layer2.0.bn2.running_mean", "layer2.0.bn2.running_var", "layer2.0.bn2.weight", "layer2.0.bn2.bias", "layer2.0.downsample.0.weight", "layer2.0.downsample.1.running_mean", "layer2.0.downsample.1.running_var", "layer2.0.downsample.1.weight", "layer2.0.downsample.1.bias", "layer2.1.conv1.weight", "layer2.1.bn1.running_mean", "layer2.1.bn1.running_var", "layer2.1.bn1.weight", "layer2.1.bn1.bias", "layer2.1.conv2.weight", "layer2.1.bn2.running_mean", "layer2.1.bn2.running_var", "layer2.1.bn2.weight", "layer2.1.bn2.bias", "layer3.0.conv1.weight", "layer3.0.bn1.running_mean", "layer3.0.bn1.running_var", "layer3.0.bn1.weight", "layer3.0.bn1.bias", "layer3.0.conv2.weight", "layer3.0.bn2.running_mean", "layer3.0.bn2.running_var", "layer3.0.bn2.weight", "layer3.0.bn2.bias", "layer3.0.downsample.0.weight", "layer3.0.downsample.1.running_mean", "layer3.0.downsample.1.running_var", "layer3.0.downsample.1.weight", "layer3.0.downsample.1.bias", "layer3.1.conv1.weight", "layer3.1.bn1.running_mean", "layer3.1.bn1.running_var", "layer3.1.bn1.weight", "layer3.1.bn1.bias", "layer3.1.conv2.weight", "layer3.1.bn2.running_mean", "layer3.1.bn2.running_var", "layer3.1.bn2.weight", "layer3.1.bn2.bias", "layer4.0.conv1.weight", "layer4.0.bn1.running_mean", "layer4.0.bn1.running_var", "layer4.0.bn1.weight", "layer4.0.bn1.bias", "layer4.0.conv2.weight", "layer4.0.bn2.running_mean", "layer4.0.bn2.running_var", "layer4.0.bn2.weight", "layer4.0.bn2.bias", "layer4.0.downsample.0.weight", "layer4.0.downsample.1.running_mean", "layer4.0.downsample.1.running_var", "layer4.0.downsample.1.weight", "layer4.0.downsample.1.bias", "layer4.1.conv1.weight", "layer4.1.bn1.running_mean", "layer4.1.bn1.running_var", "layer4.1.bn1.weight", "layer4.1.bn1.bias", "layer4.1.conv2.weight", "layer4.1.bn2.running_mean", "layer4.1.bn2.running_var", "layer4.1.bn2.weight", "layer4.1.bn2.bias", "fc.weight", "fc.bias".出现这种问题
最新发布