Bellman-Ford算法详讲

转载自:http://www.wutianqi.com/?p=1912

相关文章:

1.Dijkstra算法

2.Floyd算法

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。

这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特福特(Lester Ford)发明。

适用条件&范围:

单源最短路径(从源点s到其它所有顶点v);

有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

边权可正可负(如有负权回路输出错误提示);

差分约束系统;

Bellman-Ford算法的流程如下:
给定图G(V, E)(其中VE分别为图G的顶点集与边集),源点s数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n], Distant[s]0

以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

BellmanFord算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1n1n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edgeuv)),判断是否存在这样情况:
dv) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
 
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。 

测试代码如下:(下面为有向图的Bellman-Ford算法。。。。。)

/*
* About:  Bellman-Ford算法
* Author: Tanky Woo
* Blog:   www.WuTianqi.com
*/
 
#include 
   
   
    
    
using namespace std;
const int maxnum = 100;
const int maxint = 99999;
 
// 边,
typedef struct Edge{
	int u, v;    // 起点,重点
	int weight;  // 边的权值
}Edge;
 
Edge edge[maxnum];     // 保存边的值
int  dist[maxnum];     // 结点到源点最小距离
 
int nodenum, edgenum, source;    // 结点数,边数,源点
 
// 初始化图
void init()
{
	// 输入结点数,边数,源点
	cin >> nodenum >> edgenum >> source;
	for(int i=1; i<=nodenum; ++i)
		dist[i] = maxint;
	dist[source] = 0;
	for(int i=1; i<=edgenum; ++i)
	{
		cin >> edge[i].u >> edge[i].v >> edge[i].weight;
		if(edge[i].u == source)          //注意这里设置初始情况
			dist[edge[i].v] = edge[i].weight;
	}
}
 
// 松弛计算
void relax(int u, int v, int weight)
{
	if(dist[v] > dist[u] + weight)
		dist[v] = dist[u] + weight;
}
 
bool Bellman_Ford()
{
	for(int i=1; i<=nodenum-1; ++i)
		for(int j=1; j<=edgenum; ++j)
			relax(edge[j].u, edge[j].v, edge[j].weight);
	bool flag = 1;
	// 判断是否有负环路
	for(int i=1; i<=edgenum; ++i)
		if(dist[edge[i].v] > dist[edge[i].u] + edge[i].weight)
		{
			flag = 0;
			break;
		}
	return flag;
}
int main()
{
	//freopen("input3.txt", "r", stdin);
    init();
	if(Bellman_Ford())
		for(int i = 1 ;i <= nodenum; i++)
			cout << dist[i] << endl;
	return 0;
}
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值