机器学习算法概览

机器学习算法概览

1、 监督式学习

工作机制:这个算法由一个目标变量或结果变量(或因变量)组成。这些变量由已知的一系列预示变量(自变量)预测而来。利用这一系列变量,我们生成一个将输入值映射到期望输出值的函数。这个训练过程会一直持续,直到模型在训练数据上获得期望的精确度。监督式学习的例子有:回归、决策树、随机森林、K – 近邻算法、逻辑回归等。

2、非监督式学习

工作机制:在这个算法中,没有任何目标变量或结果变量要预测或估计。这个算法用在不同的组内聚类分析。这种分析方式被广泛地用来细分客户,根据干预的方式分为不同的用户组。非监督式学习的例子有:关联算法和 K – 均值算法。

3、强化学习

工作机制:这个算法训练机器进行决策。它是这样工作的:机器被放在一个能让它通过反复试错来训练自己的环境中。机器从过去的经验中进行学习,并且尝试利用了解最透彻的知识作出精确的商业判断。 强化学习的例子有马尔可夫决策过程。


回归(Regression)

回归是在自变量和需要预测的变量之间构建一个模型,并使用迭代的方法逐渐降低预测值和真实值之间的误差。回归方法是统计机器学习的一种
常用的回归算法如下:
Ordinary Least Squares(最小二乘法)
Logistic Regression(逻辑斯底回归)
Stepwise Regression(逐步回归)
Multivariate Adaptive Regression Splines(多元自适应回归样条法)
Locally Estimated Scatterplot Smoothing(局部加权散点平滑法)

基于样例的方法(Instance-based Methods)

基于样例的方法需要一个样本库,当新样本出现时,在样本库中找到最佳匹配的若干个样本,然后做出推测。基于样例的方法又被成为胜者为王的方法和基于内存的学习,该算法主要关注样本之间相似度的计算方法和存储数据的表示形式。
k-Ne

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值