BEAM065 Bank ManagementR

Java Python BEAM065 Bank Management

Coursework 1 (40% of the mark for this module) Submission

Word limit: 2,000.

This assignment consists of two options.

YOU NEED TO CHOOSE ONE OPTION ONLY (Option 1 or Option 2).

Option 1 (100 marks) - From Compustat (available through WRDS) or Orbis, download relevant data for at least 50 banks (depository institutions),from any country of your choice. Run at least 6 different regression models to examine how the banks’ ROA might be affected by:

a)  Credit risk

In particular, you could examine:

-    The impact of non-performing loans

-    The impact of loan-loss provisions

b) Lending policies

In particular, you could examine:

-    The impact of lending growth

-    The impact of the business model (e.g., different categories of loans)

c) Size

-    Usually, the literature considers the natural logarithm of total assets (or market capitalisation, for listed banks) as a proxy

d) Capital structure

In particular, you could examine:

-    The impact of Tier 1 ratio

-    The impact of the equity multiplier

You should consider the relevant literature to justify your choice of proxy for each variable in your methodology discussion. You can use whatever econometric specification you deem appropriate. You can also add further control variables.

Then, discuss whether your results are consistent with your expectations (by comparing them with the relevant literature), and what might be driving any unexpected result.

IMPORTANT: For your analysis, you MUST use STATA. The reference list,

tables (including notes and titles of the tables) and figures (including notes and titles of the tables) do NOT count towards the word limit. You do NOT need an introduction or conclusion in your report, but you can divide your report into three different sections, one to describe briefly your methodology and data (e.g, database used and sample selection), and one for the discussion of the results.

Suggested structure for the report:

1.1 Methodology

1.2 Data

1.3 Discussion of the results

Option 2 (100 marks) - Answer two of the following four questions:

a)  What are the potential consequences of interest rates near or below zero in terms of:

• Bank performance

• Bank risk-taking

• Bank lending

(50 marks) (max 1,000 words)

b) How can we estimate the potential impact of a new regulation on&ndai 写BEAM065 Bank ManagementR bsp;bank shareholders, before it is actually implemented? Provide some examples of recent academic papers that have attempted to do this, and briefly describe their findings.

(50 marks) (max 1,000 words)

c)  Describe how competition in banking markets might affect:

•   Access to bank funding, and related cost, for SMEs (small-medium enterprises)

• Economic growth (especially at the local/regional level)

(50 marks) (max 1,000 words)

d) Describe how capital requirements might affect:

• Bank performance

• Bank credit risk

(50 marks) (max 1,000 words)

You may (but do not have to) support your analysis with quantitative examples and statistical analysis.

IMPORTANT: The reference list does NOT count towards the word limit. You do NOT need an introduction or conclusion in your essay.

Further guidelines

This assignment requires you to focus on the concepts and theories developed in weeks 1 to 10, and is related to the ILOs 1-3, and 5-10. You are expected to read all of the relevant core academic material on ELE. Evidence of reading optional articles will be rewarded if it improves the quality of your answers. The marking criteria are stated in Appendix A below.

IMPORTANT: Academic misconduct

The material you submit must be your own work and written in your own words. Where you have used quoted material, you must make full reference to it.

You might be asked to send the data used in your analysis to the Module Leader (Dr.

Thaer Alhalabi), along with any other file that you might have used for your data analysis

(e.g., Excel file, STATA do-file or log file). Dr. Thaer Alhalabi might also ask you to explain how

you ran the regressions, either via email or during an online meeting on Teams. Further

investigation of potential academic misconduct might ensue, according to University regulations.

More information on referencing style

https://vle.exeter.ac.uk/course/view.php?id=6748&section=2

Late Submission of Assignments

You must submit your assignment by the deadline specified. If you fail to submit on time, the following penalties apply:

• Work submitted up to 1 hour after the deadline, which has reached the standard of the

module pass mark or above, will be subject to a penalty of 5% of the total available mark for the coursework, down to a minimum score of the module pass mark.

•     The penalty for assessed work submitted up to two weeks and without an agreed extension is a capped mark of 50%.

•     Assessed work submitted more than two weeks beyond a submission date will receive a mark of zero         

基于机器学习的音频情感分析系统Python源码(高分项目),能够从语音中识别出四种基本情感:愤怒、快乐、中性和悲伤。个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值