前序遍历的规则如下:
⑴访问结点本身(N),
⑵遍历该结点的左子树(L),
⑶遍历该结点的右子树(R)。
根据访问结点操作发生位置命名:
① NLR:
前序遍历(PreorderTraversal亦称(先序遍历))
——访问根结点的操作发生在遍历其左右子树之前。
② LNR:
中序遍历(InorderTraversal)
——访问根结点的操作发生在遍历其左右子树之中(间)。
③ LRN:
后序遍历(PostorderTraversal)
——访问根结点的操作发生在遍历其左右子树之后。
输出:
二叉树的中的数据结构:
------------------------------------
12:root
11: -> new leftpoiter
34: -> new rightpoiter
45: -> rightpoiter -> new rightpoiter
67: -> rightpoiter -> rightpoiter -> new rightpoiter
38: -> rightpoiter -> rightpoiter -> new leftpoiter
56: -> rightpoiter -> rightpoiter -> rightpoiter -> new leftpoiter
43: -> rightpoiter -> rightpoiter -> leftpoiter -> new rightpoiter
22: -> rightpoiter -> new leftpoiter
8: -> leftpoiter -> new leftpoiter
------------------------------------
找到了:8
/**
* @Project: struts2
* @Title: BinaryTreeTest.java
* @Package com.yza.struct
* @author yongzhian
* @date 2014-10-8 下午4:29:54
* @Copyright: 2014 www.yineng.com.cn Inc. All rights reserved.
* @version V1.0
*/
package com.yza.struct;
/**
* @ClassName BinaryTreeTest
* @Description 二叉树
* @author yongzhian
* @Date 2014-10-8
*/
public class BinaryTreeTest {
private BinaryTree root = null;
public BinaryTreeTest() {
init();
}
private void init() {
int data[] = { 12, 11, 34, 45, 67, 38, 56, 43, 22, 8 };
root = new BinaryTree(data[0]);
System.out.println("二叉树的中的数据结构:");
System.out.println("------------------------------------");
System.out.println(data[0] + ":root");
for (int i = 1; i < data.length; i++) {
System.out.print(data[i] + ":");
root.insertTree(root, data[i]);
}
System.out.println("------------------------------------");
}
public void serach(int key) {
if (searchkey(root, key)) {
System.out.println("找到了:" + key);
} else {
System.out.println("没有找到:" + key);
}
}
private boolean searchkey(BinaryTree root, int key) {
if (root == null) {
return false;
} else if (root.data == key) {
return true;
} else if (key >= root.data) { //key比根的值大则查询右变
return searchkey(root.rightpoiter, key);
}
return searchkey(root.leftpoiter, key);//如果key比根小则查询左边
}
public static void main(String[] args) {
BinaryTreeTest b = new BinaryTreeTest();
int key = 8; //key:任意数值
b.serach(key); //到二叉树中查找
}
}
class BinaryTree {
int data;
BinaryTree leftpoiter;
BinaryTree rightpoiter;
BinaryTree(int data) {
this.data = data;
leftpoiter = null;
rightpoiter = null;
}
// 将数据插入到二叉树中 数据大的放到右边节点 小的放到左边节点
public void insertTree(BinaryTree root, int data) {
if (data >= root.data) {
if (root.rightpoiter == null) {
System.out.println(" -> new rightpoiter");
root.rightpoiter = new BinaryTree(data);
} else {
System.out.print(" -> rightpoiter");
insertTree(root.rightpoiter, data);
}
} else {
if (root.leftpoiter == null) {
System.out.println(" -> new leftpoiter");
root.leftpoiter = new BinaryTree(data);
} else {
System.out.print(" -> leftpoiter");
insertTree(root.leftpoiter, data);
}
}
}
}
输出:
二叉树的中的数据结构:
------------------------------------
12:root
11: -> new leftpoiter
34: -> new rightpoiter
45: -> rightpoiter -> new rightpoiter
67: -> rightpoiter -> rightpoiter -> new rightpoiter
38: -> rightpoiter -> rightpoiter -> new leftpoiter
56: -> rightpoiter -> rightpoiter -> rightpoiter -> new leftpoiter
43: -> rightpoiter -> rightpoiter -> leftpoiter -> new rightpoiter
22: -> rightpoiter -> new leftpoiter
8: -> leftpoiter -> new leftpoiter
------------------------------------
找到了:8