一、基本概念
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
二、基本思想与策略
基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。
三、适用的情况
能采用动态规划求解的问题的一般要具有3个性质:
(1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。
(2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)
四、求解的基本步骤
动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。
初始状态→│决策1│→│决策2│→…→│决策n│→结束状态
图1 动态规划决策过程示意图
(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。
(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。
实际应用中可以按以下几个简化的步骤进行设计:
(1)分析最优解的性质,并刻画其结构特征。
(2)递归的定义最优解。
(3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值
(4)根据计算最优值时得到的信息,构造问题的最优解
五、算法实现的说明
动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。
使用动态规划求解问题,最重要的就是确定动态规划三要素:
(1)问题的阶段 (2)每个阶段的状态
(3)从前一个阶段转化到后一个阶段之间的递推关系。
递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。
确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}
六、动态规划算法基本框架
for(j=1; j<=m; j=j+1) // 第一个阶段
xn[j] = 初始值;
for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段
for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式
xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])};
t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案
print(x1[j1]);
for(i=2; i<=n-1; i=i+1)
{
t = t-xi-1[ji];
for(j=1; j>=f(i); j=j+1)
if(t=xi[ji])
break;
}
实例分析:
题目:
给定一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]* k[1] * … *k[m]可能的最大乘积是多少?
例子:
例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
问题解析:
- 问题是求最优解;
- 整体的问题的最优解是依赖各个子问题的最优解;
- 子问题之间还有互相重叠的更小的子问题;
- 为避免子问题的重复计算,我们存储子问题的最优解。从上往下分析问题,从下往上求解问题。
上面的几个条件可以看出,属于动态规划问题。
链接:
剑指Offer(第2版):P96
思路标签:
算法:动态规划、贪婪算法
解答:
动态规划:
- 定义函数f(n)表示为把长度为n的绳子剪成若干段后各段长度乘积的最大值。
- 对于第一刀,我们有n-1种可能的选择,可推导出f(n)=max{f(i)*f(n-i)};
- 很明显这是一个从上至下的递归,但是这个递归存在很多重复的计算,所以使用至下而上的动态规划,将子问题的最优解保存。
- 注意绳子剪成ix(n-i)和(n-i)xi是相同的;
- 注意不符合切割条件的输入n,以及输入为2、3长度时的结果,因为题中规定m>1。
//动态规划算法实现
public static int maxProductAfterCutting1(int length) {
if (length < 2) {
return 0;
} else if (length == 2) {
return 1;
} else if (length == 3) {
return 2;
}
// 将最优解存储在数组中
int[] multiMaxLength = new int[length + 1];
// 数组中第i个元素表示把长度为i的绳子剪成若干段之后的乘积的最大值
multiMaxLength[0] = 0;
multiMaxLength[1] = 1;
multiMaxLength[2] = 2;
multiMaxLength[3] = 3;
int max = 0;
for (int i = 4; i <= length; i++) {
// 求出所有可能的f(j)*f(i-j)并比较出他们的最大值
for (int j = 1; j <= i / 2; j++) {
int temp = multiMaxLength[j] * multiMaxLength[i - j];
if (max < temp) {
max = temp;
}
multiMaxLength[i] = max;
}
}
return multiMaxLength[length];
}
贪婪算法:
- 贪心算法在对问题求解时,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解;
- 选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关;
- 题目贪婪策略:当n>=5时,尽可能多地剪长度为3的绳子;当剩下的绳子长度为4时,把绳子剪成两段长度为2的绳子。
//贪婪算法实现:
//策略如下:n>=5时,尽可能多的剪成长度为3的绳子,当剩下的绳子长度为4时,尽可能剪成长度为2 的绳子
public static int maxProductAfterCutting2(int length) {
if (length < 2) {
return 0;
} else if (length == 2) {
return 1;
} else if (length == 3) {
return 2;
}
//尽可能多减去长度为3 的绳子段
int timeOf3 = length / 3;
//当剩下最后的绳子长度为4的时候,不在减去长度为3 的绳子段
if (length - timeOf3 * 3 == 1) {
timeOf3 -= 1;
}
//此时最好的选择是把剩下的绳子剪成长度为2的两段
int timeOf2 = (length - timeOf3 * 3) / 2;
return (int)(Math.pow(3, timeOf3) * Math.pow(2, timeOf2));
}
贪婪算法思路证明:对于一段长度为n的绳子。当n >=5时,由n>4&&2n>9可以证明2(n-2)>n&&3(n-3)>n,也就是说当剩下绳子长度为5的时候就将他剪成长度分别为2和3 的绳子段,由于2(n-2)<3(n-3),因此尽可能多的剪长度为3 的绳子段。当n=4时,由2*2>1*3故此时尽可能多的剪长度为2的绳子段。
完整代码实现:
public class Singleton {
public static void main(String[] args) {
System.out.println(maxProductAfterCutting1(1));
System.out.println(maxProductAfterCutting1(2));
System.out.println(maxProductAfterCutting1(3));
System.out.println(maxProductAfterCutting1(4));
System.out.println(maxProductAfterCutting1(5));
System.out.println(maxProductAfterCutting1(8));
System.out.println(maxProductAfterCutting1(10));
System.out.println("--------------------------------");
System.out.println(maxProductAfterCutting2(1));
System.out.println(maxProductAfterCutting2(2));
System.out.println(maxProductAfterCutting2(3));
System.out.println(maxProductAfterCutting2(4));
System.out.println(maxProductAfterCutting2(5));
System.out.println(maxProductAfterCutting2(8));
System.out.println(maxProductAfterCutting2(10));
}
// 动态规划算法实现
public static int maxProductAfterCutting1(int length) {
if (length < 2) {
return 0;
} else if (length == 2) {
return 1;
} else if (length == 3) {
return 2;
}
// 将最优解存储在数组中
int[] multiMaxLength = new int[length + 1];
// 数组中第i个元素表示把长度为i的绳子剪成若干段之后的乘积的最大值
multiMaxLength[0] = 0;
multiMaxLength[1] = 1;
multiMaxLength[2] = 2;
multiMaxLength[3] = 3;
int max = 0;
for (int i = 4; i <= length; i++) {
// 求出所有可能的f(j)*f(i-j)并比较出他们的最大值
for (int j = 1; j <= i / 2; j++) {
int temp = multiMaxLength[j] * multiMaxLength[i - j];
if (max < temp) {
max = temp;
}
multiMaxLength[i] = max;
}
}
return multiMaxLength[length];
}
// 贪婪算法实现:
// 策略如下:n>=5时,尽可能多的剪成长度为3的绳子,当剩下的绳子长度为4时,尽可能剪成长度为2 的绳子
public static int maxProductAfterCutting2(int length) {
if (length < 2) {
return 0;
} else if (length == 2) {
return 1;
} else if (length == 3) {
return 2;
}
// 尽可能多减去长度为3 的绳子段
int timeOf3 = length / 3;
// 当剩下最后的绳子长度为4的时候,不在减去长度为3 的绳子段
if (length - timeOf3 * 3 == 1) {
timeOf3 -= 1;
}
// 此时最好的选择是把剩下的绳子剪成长度为2的两段
int timeOf2 = (length - timeOf3 * 3) / 2;
return (int) (Math.pow(3, timeOf3) * Math.pow(2, timeOf2));
}
}