C++结构体字节对齐规则

    虽然我现在开发的时候还没有接触到这一部分的知识,但是我面试了两次,都有考到这个问题,所以还是有必要记录一下。

   我在网上找了一篇感觉还不错,我就先记下来,一备以后回忆所用。

 

一、解释

现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。

各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对 数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那 么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。

二、准则

其实字节对齐的细节和具体编译器实现相关,但一般而言,满足三个准则:

1. 结构体变量的首地址能够被其最宽基本类型成员的大小所整除;

2. 结构体每个成员相对于结构体首地址的偏移量都是成员大小的整数倍,如有需要编译器会在成员之间加上填充字节;

3. 结构体的总大小为结构体最宽基本类型成员大小的整数倍,如有需要编译器会在最末一个成员之后加上填充字节。

三、基本概念


字节对齐:计算机存储系统中以Byte为单位存储数据,不同数据类型所占的空间不同,如:整型(int)数据占4个字节,字符型(char)数据占一个字节,短整型(short)数据占两个字节,等等。计算机为了快速的读写数据,默认情况下将数据存放在某个地址的起始位置,如:整型数据(int)默认存储在地址能被4整除的起始位置,字符型数据(char)可以存放在任何地址位置(被1整除),短整型(short)数据存储在地址能被2整除的起始位置。这就是默认字节对齐方式。

四、结构体长度求法

1.成员都相同时(或含数组且数组数据类型同结构体其他成员数据类型):
结构体长度=成员数据类型长度×成员个数(各成员长度之和);
结构体中数组长度=数组数据类型长度×数组元素个数;

2.成员不同且不含其它结构体时;
(1).分析各个成员长度;
(2).找出最大长度的成员长度M(结构体的长度一定是该成员的整数倍);
(3).并按最大成员长度出现的位置将结构体分为若干部分;
(4).各个部分长度一次相加,求出大于该和的最小M的整数倍即为该部分长度
(5).将各个部分长度相加之和即为结构体长度

3.含有其他结构体时:
(1).分析各个成员长度;
(2).对是结构体的成员,其长度按b来分析,且不会随着位置的变化而变化;
(3).分析各个成员的长度(成员为结构体的分析其成员长度),求出最大值;
(4).若长度最大成员在为结构体的成员中,则按结构体成员为分界点分界;
其他成员中有最大长度的成员,则该成员为分界点;
求出各段长度,求出大于该和的最小M的整数倍即为该部分长度
(5).将各个部分长度相加之和即为结构体长度

五、空结构体


struct S5 { };  
sizeof( S5 ); // 结果为1

“空结构体”(不含数据成员)的大小不为0,而是1。试想一个“不占空间”的变量如何被取地址、两个不同的“空结构体”变量又如何得以区分呢于是,“空结构体”变量也得被存储,这样编译器也就只能为其分配一个字节的空间用于占位了。

六、有static的结构体
struct S4{ 
    char a; 
    long b; 
    static long c; //静态 
}; 

静态变量存放在全局数据区内,而sizeof计算栈中分配的空间的大小,故不计算在内,S4的大小为4+4=8。

七、举例说明
1.举例1


很显然默认对齐方式会浪费很多空间,例如如下结构:

struct student 
{ 
    char name[5]; 
    int num; 
    short score; 
}


本来只用了11bytes(5+4+2)的空间,但是由于int型默认4字节对齐,存放在地址能被4整除的起始位置,即:如果name[5]从0开始存放,它占5bytes,而num则从第8(偏移量)个字节开始存放。所以sizeof(student)=16。于是中间空出几个字节闲置着。但这样便于计算机快速读写数据,是一种以空间换取时间的方式。其数据对齐如下图:

|char|char|char|char| 
|char|----|----|----| 
|--------int--------| 
|--short--|----|----| 

如果我们将结构体中变量的顺序改变为:

struct student 
{ 
    int num; 
    char name[5]; 
    short score; 
}


则,num从0开始存放,而name从第4(偏移量)个字节开始存放,连续5个字节,score从第10(偏移量)开始存放,故sizeof(student)=12。其数据对齐如下图:

|--------int--------| 
|char|char|char|char| 
|char|----|--short--| 

如果我们将结构体中变量的顺序再次改为为:

struct student 
{ 
    int num; 
    short score; 
    char name[5]; 
}


则,sizeof(student)=12。其数据对齐如下图:

|--------int--------| 
|--short--|char|char| 
|char|char|char|----| 
2.举例2

(1)

struct test1 
  { int a; 
   int b[4]; 
  };


sizeof(test1)=sizeof(int)+4*sizeof(int)=4+4*4=20;

(2)

 struct test2 
  { char a; 
   int b; 
   double c; 
   bool d; 
  };

分析:该结构体最大长度double型,长度是8,因此结构体长度分两部分:
第一部分是a、 b、 c的长度和,长度分别为1,4,8,则该部分长度和为13,取8的大于13的最小倍数为16;
第二部分为d,长度为1,取大于1的8的最小倍数为8,
两部分和为24,故sizeof(test2)=24;

(3)

 struct test3 
{ 
 char a; 
 test2 bb;//见上题 
 int cc; 
}


分析:该结构体有三个成员,其中第二个bb是类型为test2的结构体,长度为24,且该结构体最大长度成员类型为double型,以后成员中没有double型,所以按bb分界为两部分:
第一部分有a 、bb两部分,a长度为1,bb长度为24,取8的大于25的最小倍数32;
第二部分有cc,长度为4,去8的大于4的最小倍数为8;
两部分之和为40,故sizeof(test3)=40;


(4)

struct test4 
{ 
 char a; 
 int b; 
}; 
struct test5 
{ char c; 
 test4 d; 
 double e; 
 bool f; 
};


求sizeof(test5)
分析:test5明显含有结构体test4,按例2容易知道sizeof(test4)=8,且其成员最大长度为4;则结构体test5的最大成员长度为8(double 型),考试.大提示e是分界点,分test5为两部分:
第一部分由c 、d、e组成,长度为1、8、8,故和为17,取8的大于17的最小倍数为24;
第二部分由f组成,长度为1,取8的大于1的最小倍数为8,
两部分和为32,故sizeof(test5)=24+8=32;

八、union

union的长度取决于其中的长度最大的那个成员变量的长度。即union中成员变量是重叠摆放的,其开始地址相同。

其实union(共用体)的各个成员是以同一个地址开始存放的,每一个时刻只可以存储一个成员,这样就要求它在分配内存单元时候要满足两点:  
  1.一般而言,共用体类型实际占用存储空间为其最长的成员所占的存储空间;  
  2.若是该最长的存储空间对其他成员的元类型(如果是数组,取其类型的数据长度,例int   a[5]为4)不满足整除关系,该最大空间自动延伸;  
  我们来看看这段代码:   

  union   mm{    
  char   a;//元长度1    
  int   b[5];//元长度4    
  double   c;//元长度8    
  int   d[3];    
  };   

本来mm的空间应该是sizeof(int)*5=20;但是如果只是20个单元的话,那可以存几个double型(8位)呢?两个半?当然不可以,所以mm的空间延伸为既要大于20,又要满足其他成员所需空间的整数倍,即24   
所以union的存储空间先看它的成员中哪个占的空间最大,拿他与其他成员的元长度比较,如果可以整除就行

九、指定对界

#pragma pack()命令

如何修改编译器的默认对齐值?
1.在VC IDE中,可以这样修改:[Project]|[Settings],c/c++选项卡Category的Code Generation选项的Struct Member Alignment中修改,默认是8字节。
2.在编码时,可以这样动态修改:#pragma pack .注意:是pragma而不是progma.

一般地,可以通过下面的方法来改变缺省的对界条件:
使用伪指令#pragma pack (n),编译器将按照n个字节对齐;
使用伪指令#pragma pack (),取消自定义字节对齐方式。

注意:如果#pragma pack (n)中指定的n大于结构体中最大成员size,则其不起作用,结构体仍然按照size最大的成员进行对界。

为了节省空间,我们可以在编码时通过#pragma pack()命令指定程序的对齐方式,括号中是对齐的字节数,若该命令括号中的内容为空,则为默认对齐方式。例如,对于上面第一个结构体,如果通过该命令手动设置对齐字节数如下:

#pragma pack(2) //设置2字节对齐

struct strdent  
{  
    char name[5]; //本身1字节对齐,比2字节对齐小,按1字节对齐  
    int num;          //本身4字节对齐,比2字节对齐大,按2字节对齐  
    short score;    //本身也2字节对齐,仍然按2字节对齐  
} 


#pragma pack() // 恢复先前的pack设置,取消设置的字节对齐方式

则,num从第6(偏移量)个字节开始存放,score从第10(偏移量)个字节开始存放,故sizeof(student)=12,其数据对齐如下图:

|char|char|  
|char|char|  
|char|----| 
|----int--| 
|----int--| 
|--short--| 

这样改变默认的字节对齐方式可以更充分地利用存储空间,但是这会降低计算机读写数据的速度,是一种以时间换取空间的方式。

十、代码验证
  • 代码
//------------------------------------ 
// 环境:VS2005 
// 时间:2010.9.24 
// 用途:结构体大小测试 
// 作者:pppboy.blog.163.com
//----------------------------------- 
#include "stdafx.h" 
#include <iostream> 
using namespace std; 
//空 
struct S0{  }; 
struct S1{ 
    char a; 
    long b; 
}; 
struct S2{ 
    long b; 
    char a; 
}; 
struct S3 { 
    char c; 
    struct S1 d;//结构体 
    long e; 
}; 
struct S4{ 
    char a; 
    long b; 
    static long c; //静态 
}; 
struct S5{ 
    char a; 
    long b; 
    char name[5]; //数组 
}; 
//含有一个数组 
struct S6{ 
    char a; 
    long b; 
    int name[5]; //数组 
}; 
struct student0 
{ 
    char name[5]; 
    int num; 
    short score; 
}; 
struct student1 
{ 
    int num; 
    char name[5]; 
    short score; 
}; 
struct student2 
{ 
    int num; 
    short score; 
    char name[5]; 
}; 
union union1 
{ 
    long a; 
    double b; 
    char name[9]; 
}; 
union   union2{    
    char a; 
    int b[5];  
    double  c; 
    int d[3];  
};    
int main(int argc, char* argv[]) 
{ 
    cout << "char: " << sizeof(char) << endl; //1 
    cout << "long: " << sizeof(long) << endl; //4 
    cout << "int:  " << sizeof(int) << endl; //4 
    cout << "S0: " << sizeof(S0) << endl; //1 
    cout << "S1: " << sizeof(S1) << endl; //8 
    cout << "S2: " << sizeof(S2) << endl; //8 
    cout << "S3: " << sizeof(S3) << endl; //24 
    cout << "S4: " << sizeof(S4) << endl; //8 
    cout << "S5: " << sizeof(S5) << endl; //16 
    cout << "S6: " << sizeof(S6) << endl; //28 
    cout << "union1 :" << sizeof(union1) << endl; 
    cout << "union2 :" << sizeof(union2) << endl; 
    cout << "student0: " << sizeof(student0) << endl; 
    cout << "student1: " << sizeof(student1) << endl; 
    cout << "student2: " << sizeof(student2) << endl; 
    system("pause"); 
    return 0; 
} 
  • 输出

//这是默认的结果(8字节对齐)

char: 1 
long: 4 
int:  4 
S0: 1 
S1: 8 
S2: 8 
S3: 16 
S4: 8 
S5: 16 
S6: 28 
union1 :16 
union2 :24 
student0: 16 
student1: 12 
student2: 12 
请按任意键继续. . .

//这是16字节对齐的结果,可以看到当设置16字节对齐时,确实没什么效果,里面最大的是double,也就是8字节,#pragma pack (n)中指定的n大于结构体中最大成员size,则其不起作用。

char: 1 
long: 4 
int:  4 
double:8 
S0: 1 
S1: 8 
S2: 8 
S3: 16 
S4: 8 
S5: 16 
S6: 28 
union1 :16 
union2 :24 
student0: 16 
student1: 12 
student2: 12 
请按任意键继续. . .

//这是2字节对齐的结果,可以慢慢参考研究

char: 1 
long: 4 
int:  4 
double:8 
S0: 1 
S1: 6 
S2: 6 
S3: 12 
S4: 6 
S5: 12 
S6: 26 
union1 :10 
union2 :20 
student0: 12 
student1: 12 
student2: 12 
请按任意键继续. . .

  • 说明:

(1)默认8字节对齐

(2)分析

S0:空

S1:

|char|----|----|----| 
|-------long--------|

S2:

|-------long--------| 
|char|----|----|----|

S3:

其中包含的S1中最长的为long,S3中也为long,以最长的为分界,那么为:1+8+4 = 13,那么这个结构体的长度就是8的倍数16。

内存是怎么样的现在还没有弄清楚。。。

S4:

静态变量存放在全局数据区内,而sizeof计算栈中分配的空间的大小,故不计算在内,S4的大小为4+4=8。

S5,S6,Student见上面例子。

union1:

最长double=8,但char c[9]用9个不够,再加一倍到16.

union2:

类型最长的是long=8,变量最长的是int b[5] = 4*5=20,20以上8的倍数为24。

十一、还没有解决的问题

虽然知道结构体中含有结构体的长度怎么计算,但不知道它的内存是什么样子的,在VS中用

cout << "&objS3.a: "<< hex  << &objS3.a << endl; 

为什么显示出来是乱码??

十二、字节对齐可能带来的隐患

(说明:从一个pdf复制,参考一下)

代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:

unsigned int i = 0x12345678; 
unsigned char *p=NULL; 
unsigned short *p1=NULL; 
p=&i; 
*p=0x00; 
p1=(unsigned short *)(p+1); 
*p1=0x0000;


最后两句代码,从奇数边界去访问unsignedshort型变量,显然不符合对齐的规定。
在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须字节对齐。

十三、参考引用

在上述内容中,引用参考了不少文章,现将链接给出,同时感谢Scorpions带来的音乐快感。这里仅供本人学习,谢谢作者。

http://blog.youkuaiyun.com/houghstc/archive/2009/06/30/4307523.aspx

http://blog.youkuaiyun.com/vincent_1011/archive/2009/08/25/4479965.aspx

http://www.baidu.com/index.php

http://apps.hi.baidu.com/share/detail/6503863

http://hmmanhui.blog.sohu.com/108007380.html

http://www.cppreference.com/wiki/keywords/sizeof

http://blog.youkuaiyun.com/goodluckyxl/archive/2005/10/17/506827.aspx

本文章出处:
http://pppboy.blog.163.com/blog/static/30203796201082494026399/

<think>首先,用户的问题是:“我想理解或解决C++结构体在内存中的字节对齐问题 请问C++ 结构体 字节对齐 内存布局”。这是一个关于C++结构体字节对齐和内存布局的问题。 根据系统级指令: - 所有行内数学表达式必须使用$...$格式,例如:$x^2$。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识,例如:[^1]。 用户可见层指令: - 回答结构清晰,帮助用户逐步解决问题,尽量保证回答真实可靠。 参考站内引用:用户提供了几个引用,我需要参考这些,但用户说“上述引用仅供参考,并不是用户真正的需求,请尽可能多的参考用户上一次的问题和你的回答”。用户没有指定上一次问题,所以我应该基于当前问题回答。 关键内容: - 引用[1]到[5]讨论了C++结构体字节对齐规则和示例。 - 规则包括:字段对齐、整个结构体大小调整、最大对齐参数等。 核心字节对齐规则: 1. 每个成员变量的起始地址必须是其类型大小的倍数。 2. 结构体的总大小必须是其最大成员大小的倍数。 3. 编译器可能会在成员之间插入填充字节以满足对齐要求。 我需要构建一个清晰、逐步的解释: 1. 介绍字节对齐的概念。 2. 解释对齐规则。 3. 提供示例。 4. 讨论为什么需要字节对齐(性能原因)。 5. 如何控制对齐(如使用#pragma pack)。 使用中文回答。 生成相关问题:在回答结束后,添加一个“相关问题”部分。 结构回答: - 开头:简要介绍问题。 - 主体:逐步解释规则、示例、内存布局。 - 结尾:总结和生成相关问题。 确保使用LaTeX格式: - 行内数学:如成员大小$sizeof(type)$。 - 独立公式:如果需要,例如计算大小。 示例: - 使用引用中的例子,如struct ISS或struct CC。 引用标识:在回答中引用参考时添加[^n],但用户提供的引用是给我的参考,不是直接引用内容。我应该基于知识回答,但引用这些参考。 用户说:“上述引用仅供参考”,所以我应该使用这些信息来构建回答,但不必直接复制。 最终回答结构: 1. 什么是字节对齐?为什么重要? 2. C++结构体字节对齐规则。 3. 示例分析。 4. 如何查看和修改对齐。 5. 总结。 6. 相关问题。 生成相关问题: - 类似示例中的,如“如何计算结构体大小?”、“如何避免不必要的填充?”等。</think>### C++结构体字节对齐与内存布局详解 在C++中,结构体(struct)的内存布局涉及字节对齐(byte alignment),这是编译器为优化内存访问性能而采用的规则。如果未对齐,CPU访问未对齐数据可能引发性能下降或硬件异常(如某些架构)。我将逐步解释核心规则、内存布局原理,并提供实用示例。所有分析基于C++标准(C++11及以上)和常见编译器行为(如GCC、MSVC)。 #### 1. **字节对齐的基本概念** 字节对齐要求每个结构体成员的起始地址必须是其类型大小的整数倍: - 例如,`int`类型通常大小为4字节(32位系统),因此其起始地址必须是4的倍数(如0x0000、0x0004)。 - 对齐规则由**最大对齐参数**决定:结构体总大小必须是所有成员中最大对齐值的整数倍。 - 为什么需要对齐?CPU访问对齐数据更高效,减少内存总线周期;未对齐数据可能导致分段错误或性能损失[^1][^3]。 数学上,成员起始地址需满足: $$\text{address} \% \text{alignof(type)} = 0$$ 其中$\text{alignof(type)}$是类型的对齐值(通常等于$sizeof(\text{type})$)。 #### 2. **核心对齐规则** C++结构体字节对齐遵循三条规则[^2][^3][^5]: 1. **成员对齐规则**:每个成员起始地址必须为其类型大小的倍数。 - 例如,`short`(2字节)起始地址需是2的倍数。 2. **填充规则**:编译器在成员间插入填充字节(padding)以满足对齐要求。 - 填充内容未定义(通常为0)。 3. **整体对齐规则**:结构体总大小必须是最大成员对齐值的整数倍。 - 最大对齐值:取所有成员类型对齐值的最大值。 #### 3. **内存布局分析示例** 我们以用户引用中的`struct ISS`为例(引用[1]),逐步分析内存布局: ```cpp struct OLS { long a; // 假设long为8字节(64位系统) short b; // 2字节 }; // sizeof(OLS) = 16? 规则计算后解释 struct ISS { short ma; // 2字节 int mb; // 4字节 OLS mc; // 嵌套结构体 short md; // 2字节 }; ``` **步骤1: 计算成员对齐和填充** - `ma`(short, 2字节):起始地址0x0000(假设基址0),大小2字节。 - `mb`(int, 4字节):起始地址需为4的倍数。当前地址0x0002不满足,插入2字节填充 → 地址0x0004开始,大小4字节。 - `mc`(OLS, 嵌套结构体): - 先计算`OLS`:`long a`(8字节)需8字节对齐,起始地址0x0008;`short b`(2字节)起始地址0x0010。但`OLS`整体大小需为最大对齐值(8字节)的倍数:当前大小10字节(8+2),需补6字节填充 → `sizeof(OLS) = 16`字节。 - `mc`在`ISS`中起始地址:`mb`结束于0x0007,下一地址0x0008满足8字节对齐 → 直接放置。 - `md`(short, 2字节):起始地址0x0018(`mc`结束于0x0017),大小2字节。 **步骤2: 计算整体大小并填充** - 当前总大小:`ma`(2) + 填充(2) + `mb`(4) + `mc`(16) + `md`(2) = 26字节。 - 最大对齐值:取`ma`(2)、`mb`(4)、`mc`(8)、`md`(2)的最大值 → 8字节。 - 26不是8的倍数,需在末尾补6字节填充 → `sizeof(ISS) = 32`字节。 内存布局可视化(单位:字节): | 地址范围 | 内容 | 说明 | |----------|------------|---------------| | 0x0000-0x0001 | `ma` | short数据 | | 0x0002-0x0003 | 填充 | 满足`mb`对齐 | | 0x0004-0x0007 | `mb` | int数据 | | 0x0008-0x000F | `mc.a` | long数据 (OLS部分) | | 0x0010-0x0011 | `mc.b` | short数据 (OLS部分) | | 0x0012-0x0017 | 填充 | OLS内部填充 | | 0x0018-0x0019 | `md` | short数据 | | 0x001A-0x001F | 填充 | 整体对齐填充 | 验证:引用[1]中调试输出`sizeof(ISS) = 32`,符合计算。 #### 4. **影响对齐的因素与控制方法** - **编译器默认行为**:编译器根据目标平台自动对齐(如x86-64通常8字节对齐)。 - **修改对齐**: - 使用`#pragma pack(n)`:强制按n字节对齐(n=1,2,4...)。 ```cpp #pragma pack(1) // 1字节对齐,无填充 struct TightPacked { int a; // 4字节 char b; // 1字节 double c; // 8字节 }; // sizeof = 13 (无填充) #pragma pack() // 恢复默认 ``` - C++11的`alignas`:指定成员对齐。 ```cpp struct CustomAlign { alignas(16) int a; // 强制16字节对齐 char b; }; ``` - **性能权衡**:紧密对齐(如`#pragma pack(1)`)节省内存,但可能降低访问速度[^3][^5]。 #### 5. **常见问题与优化建议** - **为什么结构体大小不等于成员之和?** 填充字节导致,如引用[3]中`struct CC`大小32而非25。 - **优化内存**: - 重排成员:按对齐值降序排列(如double→int→short→char),减少填充。 ```cpp // 优化前:sizeof ≈ 12 (含填充) struct BadOrder { char a; double b; char c; }; // 优化后:sizeof = 16 (更紧凑) struct GoodOrder { double b; int a; char c; }; ``` - 使用位域(bit-field):对bool或小范围整数压缩。 ```cpp struct BitField { unsigned a : 4; // 4位 unsigned b : 4; }; // sizeof可能为1字节 ``` - **调试工具**:使用`offsetof`宏查看成员偏移,或编译器选项输出内存布局。 #### 6. **总结** 字节对齐C++结构体内存布局的核心机制,由成员对齐、填充和整体对齐规则构成。默认行为平衡性能与内存,但可通过`#pragma pack`或成员重排优化。理解这些规则有助于避免内存浪费和访问错误。实际开发中,使用`sizeof`和`offsetof`验证布局[^2][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值