分类算法--贝叶斯分类法(Maprdecue实现)<转>

本文详细介绍了贝叶斯算法在拼写检查和文本分类领域的应用,包括贝叶斯分类的基础理论、拼写纠正的实现过程以及如何通过贝叶斯公式计算不同猜测的正确性。通过实例解析,清晰展示了贝叶斯方法在解决实际问题中的高效性和实用性。

贝叶斯是一个很有用的算法,可以用在【分词】、【拼写检查】、【分类】、【模式识别】等领域。

       附件是基于贝叶斯的简单实现。如果需要有实际需要可以找我进行测试。

 

贝叶斯分类是统计学分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naïve BayesNB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,且方法简单、分类准确率高、速度快。由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就出现了许多降低独立性假设的贝叶斯分类算法,如TAN(tree augmented Bayes network)算法。

      贝叶斯分类基础:

      这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

      表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:

      贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B)P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

      下面不加证明地直接给出贝叶斯定理:

     

       举例(摘录):

      一所学校里面有 60% 的男生,40% 的女生。男生总是穿长裤,女生则一半穿长裤一半穿裙子。有了这些信息之后我们可以容易地计算“随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大”,这个就是前面说的“正向概率”的计算。然而,假设你走在校园中,迎面走来一个穿长裤的学生(很不幸的是你高度近似,你只看得见他(她)穿的是否长裤,而无法确定他(她)的性别),你能够推断出他(她)是男生的概率是多大吗?

      一些认知科学的研究表明(《决策与判断》以及《Rationality for Mortals》第12章:小孩也可以解决贝叶斯问题),我们对形式化的贝叶斯问题不擅长,但对于以频率形式呈现的等价问题却很擅长。在这里,我们不妨把问题重新叙述成:你在校园里面随机游走,遇到了 N 个穿长裤的人(仍然假设你无法直接观察到他们的性别),问这 N 个人里面有多少个女生多少个男生。

你说,这还不简单:算出学校里面有多少穿长裤的,然后在这些人里面再算出有多少女生,不就行了?

我们来算一算:假设学校里面人的总数是 U 个。60% 的男生都穿长裤,于是我们得到了 U * P(Boy) * P(Pants|Boy) 个穿长裤的(男生)(其中 P(Boy) 是男生的概率 = 60%,这里可以简单的理解为男生的比例;P(Pants|Boy) 是条件概率,即在 Boy 这个条件下穿长裤的概率是多大,这里是 100% ,因为所有男生都穿长裤)。40% 的女生里面又有一半(50%)是穿长裤的,于是我们又得到了 U * P(Girl) * P(Pants|Girl) 个穿长裤的(女生)。加起来一共是 U * P(Boy) * P(Pants|Boy) + U * P(Girl) * P(Pants|Girl) 个穿长裤的,其中有 U * P(Girl) * P(Pants|Girl) 个女生。两者一比就是你要求的答案。

下面我们把这个答案形式化一下:我们要求的是 P(Girl|Pants) (穿长裤的人里面有多少女生),我们计算的结果是 U * P(Girl) * P(Pants|Girl) / [U * P(Boy) * P(Pants|Boy) + U * P(Girl) * P(Pants|Girl)] 。容易发现这里校园内人的总数是无关的,可以消去。于是得到

P(Girl|Pants) = P(Girl) * P(Pants|Girl) / [P(Boy) * P(Pants|Boy) + P(Girl) * P(Pants|Girl)]

注意,如果把上式收缩起来,分母其实就是 P(Pants) ,分子其实就是 P(Pants, Girl) 。而这个比例很自然地就读作:在穿长裤的人( P(Pants) )里面有多少(穿长裤)的女孩( P(Pants, Girl) )。

上式中的 Pants 和 Boy/Girl 可以指代一切东西,所以其一般形式就是:

P(B|A) = P(A|B) * P(B) / [P(A|B) * P(B) + P(A|~B) * P(~B) ]

收缩起来就是:

P(B|A) = P(AB) / P(A)

其实这个就等于:

P(B|A) * P(A) = P(AB)

难怪拉普拉斯说概率论只是把常识用数学公式表达了出来

然而,后面我们会逐渐发现,看似这么平凡的贝叶斯公式,背后却隐含着非常深刻的原理。

 

举例拼写纠正

经典著作《人工智能:现代方法》的作者之一 Peter Norvig 曾经写过一篇介绍如何写一个拼写检查/纠正器的文章(原文在这里,徐宥的翻译版在这里,这篇文章很深入浅出,强烈建议读一读),里面用到的就是贝叶斯方法,这里我们不打算复述他写的文章,而是简要地将其核心思想介绍一下。

首先,我们需要询问的是:“问题是什么?

问题是我们看到用户输入了一个不在字典中的单词,我们需要去猜测:“这个家伙到底真正想输入的单词是什么呢?”用刚才我们形式化的语言来叙述就是,我们需要求:

P(我们猜测他想输入的单词 | 他实际输入的单词)

这个概率。并找出那个使得这个概率最大的猜测单词。显然,我们的猜测未必是唯一的,就像前面举的那个自然语言的歧义性的例子一样;这里,比如用户输入: thew ,那么他到底是想输入 the ,还是想输入 thaw ?到底哪个猜测可能性更大呢?幸运的是我们可以用贝叶斯公式来直接出它们各自的概率,我们不妨将我们的多个猜测记为 h1 h2 .. ( h 代表 hypothesis),它们都属于一个有限且离散的猜测空间 H (单词总共就那么多而已),将用户实际输入的单词记为 D ( D 代表 Data ,即观测数据),于是

P(我们的猜测1 | 他实际输入的单词)

可以抽象地记为:

P(h1 | D)

类似地,对于我们的猜测2,则是 P(h2 | D)。不妨统一记为:

P(h | D)

运用一次贝叶斯公式,我们得到:

P(h | D) = P(h) * P(D | h) / P(D)

对于不同的具体猜测 h1 h2 h3 .. ,P(D) 都是一样的,所以在比较 P(h1 | D) 和 P(h2 | D) 的时候我们可以忽略这个常数。即我们只需要知道:

P(h | D) ∝ P(h) * P(D | h) (注:那个符号的意思是“正比例于”,不是无穷大,注意符号右端是有一个小缺口的。)

这个式子的抽象含义是:对于给定观测数据,一个猜测是好是坏,取决于“这个猜测本身独立的可能性大小(先验概率,Prior )”和“这个猜测生成我们观测到的数据的可能性大小”(似然,Likelihood )的乘积。具体到我们的那个 thew 例子上,含义就是,用户实际是想输入 the 的可能性大小取决于 the 本身在词汇表中被使用的可能性(频繁程度)大小(先验概率)和 想打 the 却打成 thew 的可能性大小(似然)的乘积。

下面的事情就很简单了,对于我们猜测为可能的每个单词计算一下 P(h) * P(D | h) 这个值,然后取最大的,得到的就是最靠谱的猜测。

function getGzMap(_data) { if (_chinaMap == undefined) { var dom = document.getElementById("container"); _chinaMap = echarts.init(dom); _chinaMap.on('click', function(params) { console.log(params); var _type = params.seriesType; if (_type == "map") { //window.parent.aaa('aa') //调用父页面方法 } else if (_type == "effectScatter") { window.parent.showMap(); } }) } var option = { backgroundColor: 'rgba(0,0,0,0)', visualMap: { type: 'piecewise', show: false, min: 0, max: 300, splitNumber: 3, itemWidth: 10, itemHeight: 10, itemGap: 5, seriesIndex: [1], pieces: [ { min: 0, max: 100, label: '优' }, { min: 101, max: 200, label: '良' }, { min: 201, max: 300, label: '高风险' } ], //color: ['#FA4D08', '#4BD94F', '#FBD32B'], //红、绿、黄 color: ['#F8DAE6', '#FEF9B5', '#B0D8B3'], //红、黄、绿 textStyle: { color: '#9EA8B1', fontSize: 10 } }, tooltip: { formatter: '{b}' }, geo: { map: 'guangdong', roam: true, aspectScale: 1, zoom: 1.5, layoutCenter: ['55%', '40%'], layoutSize: 500, label: { normal: { show: true }, emphasis: { show: true } }, itemStyle: { normal: { areaColor: '#323c48', borderColor: '#111', borderColor: '#3BB4DF', shadowColor: '#25A3FC', shadowBlur: 10 }, emphasis: { areaColor: '#ddb926' } } }, series: [{ type: 'effectScatter', coordinateSystem: 'geo', data: unitData, symbolSize: 10, symbol: 'image://../../../../Content/images/One/fire.png', //symbolRotate: 35, rippleEffect: { period: 4, scale: 5, brushType: 'fill', }, label: { normal: { formatter: '{b}', position: 'right', show: false }, emphasis: { show: false } }, itemStyle: { normal: { color: '#fff' } } }, { name: '', type: 'map', geoIndex: 0, mapType: 'guangdong', // 自定义扩展图表类型 label: { normal: { show: true, } }, itemStyle: { normal: { label: { show: true, fontSize: 10, color: '#111' }, shadowColor: '#ddb926', shadowBlur: 5, }, emphasis: { label: { show: true }, shadowColor: 'rgba(0, 0, 0, 0.5)', shadowBlur: 10 } }, data: _data }, { type: 'effectScatter', coordinateSystem: 'geo', data: windData, symbolSize: 10, symbol: 'image://../../../../Content/images/One/wind.png', //symbolRotate: 35, rippleEffect: { period: 4, scale: 5, brushType: 'fill', }, label: { normal: { formatter: '{b}', position: 'right', show: false }, emphasis: { show: false } }, itemStyle: { normal: { color: '#fff' } } }, ] }; $.getJSON('../../MapCN/guangdong.json', function(chinaJson) { echarts.registerMap('guangdong', chinaJson); _chinaMap.setOption(option, true); }); }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值