linux-2.6.32在mini2440开发板上移植 ---按键驱动程序移植

本文详细介绍了按键驱动程序的编写方法,包括按键原理、驱动程序移植过程、中断服务程序实现、设备操作集定义等关键步骤,并指导如何将驱动程序加入内核中。此外,提供了一个按键测试程序,用于验证驱动程序的功能。

转载:http://blog.youkuaiyun.com/viewsky11/article/details/11846881


编者:按键驱动程序涉及到linux中断程序的编写。

1、按键原理图。


2、驱动程序的编写移植。

在/linux-2.6.32.2/drivers/char/目录下创建一个新的驱动程序文件mini2440_buttons.c,内容及详细注释如下:

<span style="font-size: 18px;">#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/irq.h>
#include <asm/irq.h>
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <mach/regs-gpio.h>
#include <mach/hardware.h>
#include <linux/platform_device.h>
#include <linux/cdev.h>
#include <linux/miscdevice.h>
#include <linux/sched.h>
#include <linux/gpio.h>
#define DEVICE_NAME "buttons" //设备名称
/*定义中断所用的结构体*/
struct button_irq_desc {
int irq;//按键对应的中断号
int pin;//按键所对应的GPIO 端口
int pin_setting; //按键对应的引脚描述,实际并未用到,保留</span>
int number; //定义键值,以传递给应用层/用户态
char *name;//每个按键的名称
};
/*结构体实体定义*/
static struct button_irq_desc button_irqs [] = {
{IRQ_EINT8 , S3C2410_GPG(0) , S3C2410_GPG0_EINT8 , 0, "KEY0"},
{IRQ_EINT11, S3C2410_GPG(3) , S3C2410_GPG3_EINT11 , 1, "KEY1"},
{IRQ_EINT13, S3C2410_GPG(5) , S3C2410_GPG5_EINT13 , 2, "KEY2"},
{IRQ_EINT14, S3C2410_GPG(6) , S3C2410_GPG6_EINT14 , 3, "KEY3"},
{IRQ_EINT15, S3C2410_GPG(7) , S3C2410_GPG7_EINT15 , 4, "KEY4"},
{IRQ_EINT19, S3C2410_GPG(11), S3C2410_GPG11_EINT19, 5, "KEY5"},
};
/*开发板上按键的状态变量,注意这里是’0’,对应的ASCII 码为30*/
static volatile char key_values [] = {'0', '0', '0', '0', '0', '0'};
/*因为本驱动是基于中断方式的,在此创建一个等待队列,以配合中断函数使用;当有按键按下并读取到键
值时,将会唤醒此队列,并设置中断标志,以便能通过 read 函数判断和读取键值传递到用户态;当没有按
键按下时,系统并不会轮询按键状态,以节省时钟资源*/
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
/*中断标识变量,配合上面的队列使用,中断服务程序会把它设置为1,read 函数会把它清零*/
static volatile int ev_press = 0;
/*本按键驱动的中断服务程序*/
static irqreturn_t buttons_interrupt(int irq, void *dev_id)
{
struct button_irq_desc *button_irqs = (struct button_irq_desc *)dev_id;
int down;
// udelay(0);
/*获取被按下的按键状态*/
down = !s3c2410_gpio_getpin(button_irqs->pin);
/*状态改变,按键被按下,从这句可以看出,当按键没有被按下的时候,寄存器的值为1(上拉),但按
键被按下的时候,寄存器对应的值为0*/
if (down != (key_values[button_irqs->number] & 1)) { // Changed
/*如果key1 被按下,则key_value[0]就变为’1’,对应的ASCII 码为31*/
key_values[button_irqs->number] = '0' + down;
ev_press = 1; /*设置中断标志为1*/
wake_up_interruptible(&button_waitq); /*唤醒等待队列*/
}
return IRQ_RETVAL(IRQ_HANDLED);
}
/*
*在应用程序执行open(“/dev/buttons”,…)时会调用到此函数,在这里,它的作用主要是注册6 个按键的中断。
*所用的中断类型是IRQ_TYPE_EDGE_BOTH,也就是双沿触发,在上升沿和下降沿均会产生中断,这样做
是为了更加有效地判断按键状态
*/
static int s3c24xx_buttons_open(struct inode *inode, struct file *file)
{
int i;
int err = 0;
for (i = 0; i < sizeof(button_irqs)/sizeof(button_irqs[0]); i++) {
if (button_irqs[i].irq < 0) {
continue;
}
/*注册中断函数*/
err = request_irq(button_irqs[i].irq, buttons_interrupt, IRQ_TYPE_EDGE_BOTH,
button_irqs[i].name, (void *)&button_irqs[i]);
if (err)
break;
}
if (err) {
/*如果出错,释放已经注册的中断,并返回*/
i--;
for (; i >= 0; i--) {
if (button_irqs[i].irq < 0) {
continue;
}
disable_irq(button_irqs[i].irq);
free_irq(button_irqs[i].irq, (void *)&button_irqs[i]);
}
return -EBUSY;
}
/*注册成功,则中断队列标记为1,表示可以通过read 读取*/
ev_press = 1;
/*正常返回*/
return 0;
}
/*
*此函数对应应用程序的系统调用close(fd)函数,在此,它的主要作用是当关闭设备时释放6 个按键的中断*
处理函数
*/
static int s3c24xx_buttons_close(struct inode *inode, struct file *file)
{
int i;
for (i = 0; i < sizeof(button_irqs)/sizeof(button_irqs[0]); i++) {
if (button_irqs[i].irq < 0) {
continue;
}
/*释放中断号,并注销中断处理函数*/
free_irq(button_irqs[i].irq, (void *)&button_irqs[i]);
}
return 0;
}
/*
*对应应用程序的read(fd,…)函数,主要用来向用户空间传递键值
*/
static int s3c24xx_buttons_read(struct file *filp, char __user *buff, size_t count, loff_t *offp)
{
unsigned long err;
if (!ev_press) {
if (filp->f_flags & O_NONBLOCK)
/*当中断标识为0 时,并且该设备是以非阻塞方式打开时,返回*/
return -EAGAIN;
else
/*当中断标识为0 时,并且该设备是以阻塞方式打开时,进入休眠状态,等待被唤醒*/
wait_event_interruptible(button_waitq, ev_press);
}
/*把中断标识清零*/
ev_press = 0;
/*一组键值被传递到用户空间*/
err = copy_to_user(buff, (const void *)key_values, min(sizeof(key_values), count));
return err ? -EFAULT : min(sizeof(key_values), count);
}
static unsigned int s3c24xx_buttons_poll( struct file *file, struct poll_table_struct *wait)
{
unsigned int mask = 0;
/*把调用poll 或者select 的进程挂入队列,以便被驱动程序唤醒*/</span>
poll_wait(file, &button_waitq, wait);
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
/*设备操作集*/
static struct file_operations dev_fops = {
.owner = THIS_MODULE,
.open = s3c24xx_buttons_open,
.release = s3c24xx_buttons_close,
.read = s3c24xx_buttons_read,
.poll = s3c24xx_buttons_poll,
};
static struct miscdevice misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DEVICE_NAME,
.fops = &dev_fops,
};
/*设备初始化,主要是注册设备*/
static int __init dev_init(void)
{
int ret;
/*把按键设备注册为misc 设备,其设备号是自动分配的*/
ret = misc_register(&misc);
printk (DEVICE_NAME"\tinitialized\n");
return ret;
}
/*注销设备*/
static void __exit dev_exit(void)
{
misc_deregister(&misc);
}
module_init(dev_init); //模块初始化,仅当使用insmod/podprobe 命令加载时有用,如果设备不是通过模块方
式加载,此处将不会被调用
module_exit(dev_exit); //卸载模块,当该设备通过模块方式加载后,可以通过rmmod 命令卸载,将调用此函数
MODULE_LICENSE("GPL");//版权信息
MODULE_AUTHOR("FriendlyARM Inc.");//作者名字

3 把按键驱动加入内核
接下来,我们把按键驱动加入到内核中,打开linux-2.6.32.2_fa/drivers/char/Kconfig 文件,加入如下红色部分内容:
config MINI2440_BUTTONS
tristate "Buttons driver for FriendlyARM Mini2440 development boards"
depends on MACH_MINI2440
default y if MACH_MINI2440
help
this is buttons driver for FriendlyARM Mini2440 development boards
config MINI2440_BUZZER
tristate "Buzzer driver for FriendlyARM Mini2440 development boards"
depends on MACH_MINI2440
default y if MACH_MINI2440
help
this is buzzer driver for FriendlyARM Mini2440 development boards
接下来,再根据该驱动的配置定义,把对应的驱动目标文件加入内核中,打开linux-2.6.32.2/drivers/char/Makefile 文件,添加如下红色部分内容:
obj-$(CONFIG_JS_RTC) += js-rtc.o
js-rtc-y = rtc.o
obj-$(CONFIG_LEDS_MINI2440) += mini2440_leds.o
obj-$(CONFIG_MINI2440_BUTTONS) += mini2440_buttons.o
obj-$(CONFIG_MINI2440_ADC) += mini2440_adc.o
# Files generated that shall be removed upon make clean
clean-files := consolemap_deftbl.c defkeymap.c
这样,我们就在内核中添加做好了LED 驱动

4 配置编译新内核
接上面的步骤,在内核源代码目录下执行:make menuconfig 重新配置内核,依次选择进入如下子菜单项:
Device Drivers --->
Character devices --->
在此按空格键选择“<*> Buttons driver for FriendlyARM Mini2440 development boards(NEW) ”选项,并退出保存内核配置。在内核源代码根目录下执行;make zImage,把生成的新内核烧写到开发板中。

5 测试按键
为了测试上面的按键驱动,创建一个按键测试程序:btn-test.c,内容如下:

<span style="font-size: 18px;">#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <errno.h>
int main(void)
{
int buttons_fd;
char buttons[6] = {'0', '0', '0', '0', '0', '0'}; //定义按键值变量,对于驱动函数中的key_values 数组
/*打开按键设备/dev/buttons*/
buttons_fd = open("/dev/buttons", 0);
if (buttons_fd < 0) {
/*打开失败则退出*/
perror("open device buttons");
exit(1);
}
/*永读按键并打印键值和状态*/
for (;;) {
char current_buttons[6];
int count_of_changed_key;
int i;
/*使用read 函数读取一组按键值(6 个)*/
if (read(buttons_fd, current_buttons, sizeof current_buttons) != sizeof current_buttons) {
perror("read buttons:");
exit(1);
}
/*逐个分析读取到的按键值*/
for (i = 0, count_of_changed_key = 0; i < sizeof buttons / sizeof buttons[0]; i++) {
if (buttons[i] != current_buttons[i]) {
buttons[i] = current_buttons[i];
/*打印按键值,并标明按键按下/抬起的状态*/
printf("%skey %d is %s", count_of_changed_key? ", ": "", i+1, buttons[i] == '0' ? "up" :
"down");
count_of_changed_key++;
}
}
if (count_of_changed_key) {
printf("\n");
}
}

/*关闭按键设备文件*/
close(buttons_fd);
return 0;
}

以下是测试图片


基于51单片机,实现对直流电机的调速、测速以及正反转控制。项目包含完整的仿真文件、源程序、原理图和PCB设计文件,适合学习和实践51单片机在电机控制方面的应用。 功能特点 调速控制:通过按键调整PWM占空比,实现电机的速度调节。 测速功能:采用霍尔传感器非接触式测速,实时显示电机转速。 正反转控制:通过按键切换电机的正转和反转状态。 LCD显示:使用LCD1602液晶显示屏,显示当前的转速和PWM占空比。 硬件组成 主控制器:STC89C51/52单片机(与AT89S51/52、AT89C51/52通用)。 测速传感器:霍尔传感器,用于非接触式测速。 显示模块:LCD1602液晶显示屏,显示转速和占空比。 电机驱动:采用双H桥电路,控制电机的正反转和调速。 软件设计 编程语言:C语言。 开发环境:Keil uVision。 仿真工具:Proteus。 使用说明 液晶屏显示: 第一行显示电机转速(单位:转/分)。 第二行显示PWM占空比(0~100%)。 按键功能: 1键:加速键,短按占空比加1,长按连续加。 2键:减速键,短按占空比减1,长按连续减。 3键:反转切换键,按下后电机反转。 4键:正转切换键,按下后电机正转。 5键:开始暂停键,按一下开始,再按一下暂停。 注意事项 磁铁和霍尔元件的距离应保持在2mm左右,过近可能会在电机转动时碰到霍尔元件,过远则可能导致霍尔元件无法检测到磁铁。 资源文件 仿真文件:Proteus仿真文件,用于模拟电机控制系统的运行。 源程序:Keil uVision项目文件,包含完整的C语言源代码。 原理图:电路设计原理图,详细展示了各模块的连接方式。 PCB设计:PCB布局文件,可用于实际电路板的制作。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开研究,重点进行了系统建模与控制策略的设计与仿真验证。通过引入螺旋桨倾斜机构,该无人机能够实现全向力矢量控制,从而具备更强的姿态调节能力和六自由度全驱动特性,克服传统四旋翼欠驱动限制。研究内容涵盖动力学建模、控制系统设计(如PID、MPC等)、Matlab/Simulink环境下的仿真验证,并可能涉及轨迹跟踪、抗干扰能力及稳定性分析,旨在提升无人机在复杂环境下的机动性与控制精度。; 适合人群:具备一定控制理论基础和Matlab/Simulink仿真能力的研究生、科研人员及从事无人机系统开发的工程师,尤其适合研究先进无人机控制算法的技术人员。; 使用场景及目标:①深入理解全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真流程;③复现硕士论文级别的研究成果,为科研项目或学术论文提供技术支持与参考。; 阅读建议:建议结合提供的Matlab代码与Simulink模型进行实践操作,重点关注建模推导过程与控制器参数调优,同时可扩展研究不同控制算法的性能对比,以深化对全驱动系统控制机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值