[22] Opencv_CUDA应用之 使用背景相减法进行对象跟踪

Opencv_CUDA应用之 使用背景相减法进行对象跟踪

  • 背景相减法是在一系列视频帧中将前景对象从背景中分离出来的过程,它广泛应用于对象检测和跟踪应用中去除背景

  • 背景相减法分四步进行:图像预处理 -> 背景建模 -> 检测前景 -> 数据验证

      1. 预处理去除噪声
      1. 背景建模,以便与前景分离
      1. 利用当前帧和背景之间的绝对差,将前景与模型背景相分离,将这个绝对差于设置的阈值相比较:如果大于阈值,则对象被认为是移动的,否则是静止的。

1. 高斯混合法

  • 高斯混合法(MoG) 是一种广泛使用的基于高斯混合的背景减法,用于分离前景和背景
  • 背景从帧序列中不断更新,混合K高斯分布用于将像素分类为前景或者背景,同时对帧的时间序列进行加权,以改善背景建模。
  • 连续变化的强度被归类为前景强度,静态强度被归类为背景强度
  • 实现代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值