Spark: Spark Streaming

本文深入探讨了Apache Spark Streaming的核心概念,包括其微批处理架构、实时数据流处理流程以及关键的转换操作。文章详细介绍了状态less和stateful转换的区别,并阐述了如何利用Spark Streaming进行大规模数据流分析。

Spark Streaming uses a “micro-batch” architecture, where the streaming computation is treated as a continuous series of batch computations on small batches of data. Spark Streaming receives data from various input sources and groups it into small batches. New batches are created at regular time intervals.At the beginning of each time interval a new batch is created,and any data that arrives during that interval gets added to that batch.At the end of the time interval the batch is done growing.The size of the time intervals is determined by a parameter called the batch interval.   



 

 

 

Transformations

Transformations on DStreams can be grouped into either stateless or stateful:

  • In stateless transformations the processing of each batch does not depend on the data of its previousbatches.
  • Stateful transformations,in contrast,use data or intermediate results from previous batches to compute the results of the current batch.They include transformations based on sliding windows and on tracking state across time.

 

 

 

 

 

 

 

 

Preferences

<<learning spark>>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值