STM32F051 刹车功能问题及解决方案

本文介绍STM32微控制器上PWM输出及过流保护配置的过程与技巧,重点在于解决刹车功能失效的问题,通过调整GPIO模式及配置参数实现了PWM互补输出与过流保护功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需求:

1. PWM互补输出

2. 过流保护,产生过流,立即停止pwm输出,并保证按照互补方式停止pwm输出。

3. 单周期保护,产生过流,当前脉冲周期停止输出,下一个脉冲周期自动回复输出,停止输出按照互补方式停止。

一路pwm的保护只能采用2/3中的一种。


过程:

pwm互补输出配置比较简单,没有问题。过流保护采用刹车功能进行保护。

第一次尝试,刹车功能不好使,刹车部分代码如下:


刹车管脚配置:

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_Level_2;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOB , &GPIO_InitStructure);	
GPIO_PinAFConfig(GPIOB, GPIO_PinSource12, GPIO_AF_2);

定时器设置:

TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
TIM_BDTRInitStructure.TIM_DeadTime = 48;
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_Low;
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);

结果,如果设置刹车引脚有效极性为低电平:

TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_Low;

则pwm一直不输出。


如果设置刹车引脚有效极性为高电平:

TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_Hight;
则pwm一直输出,刹车引脚置为低电平,也不能停止pwm输出。

增加刹车中断,发现,如果设置刹车引脚为低,一直进中断。怀疑管脚复用有问题,更改PB12的管脚模式为复用模式:

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
问题解决。


代码:

#include "stm32f0xx.h"

void TIM_Config(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;

  RCC_AHBPeriphClockCmd( RCC_AHBPeriph_GPIOA | RCC_AHBPeriph_GPIOB, ENABLE);
  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_7;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;					
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ;
  GPIO_Init(GPIOA, &GPIO_InitStructure);
  
  GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_2);
  GPIO_PinAFConfig(GPIOA, GPIO_PinSource8, GPIO_AF_2);

	
  //GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; <span style="white-space:pre">	</span>// 原先错误的配置
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;<span style="white-space:pre">		</span>// 正确的配置
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_Level_2;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
  GPIO_Init(GPIOB , &GPIO_InitStructure);	
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource12, GPIO_AF_2);
	  
}

void TIM_PWM_Config(void)
{
  TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
  TIM_OCInitTypeDef<span style="white-space:pre">	</span>   TIM_OCInitStructure;
  TIM_BDTRInitTypeDef<span style="white-space:pre">	</span>   TIM_BDTRInitStructure;
	
  uint16_t<span style="white-space:pre">		</span>   TimerPeriod = 0;
  uint16_t<span style="white-space:pre">		</span>   Channel1Pulse = 0;

  // calc freq	
  TimerPeriod = (SystemCoreClock / 10000 ) - 1;
  // calc duty cycle
  Channel1Pulse = (uint16_t) (((uint32_t) 5 * (TimerPeriod - 1)) / 10);

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 , ENABLE);
  
  TIM_TimeBaseStructure.TIM_Prescaler = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
  TIM_TimeBaseStructure.TIM_Period = TimerPeriod;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
  TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);

  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	
  TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
  TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
  TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
  TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
  TIM_OCInitStructure.TIM_Pulse = Channel1Pulse;
  TIM_OC1Init(TIM1, &TIM_OCInitStructure);
	
  TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
  TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
  TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
  TIM_BDTRInitStructure.TIM_DeadTime = 48;
  TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
  TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_Low;
  //TIM_AutomaticOutput_Enable: 刹车后,刹车输入电平变为无效无效后,下一个脉冲周期,自动回复脉冲输出。
  //TIM_AutomaticOutput_Disable: 刹车后,脉冲输出永久禁止,除非手动调用TIM_CtrlPWMOutputs(TIM1, ENABLE),否则不能启动pwm输出。
  TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
  TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);

  TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);
  TIM_ARRPreloadConfig(TIM1, ENABLE);														
	

  TIM_Cmd(TIM1, ENABLE);
	
  TIM_CtrlPWMOutputs(TIM1, ENABLE);	
}

int main(void)
{
  TIM_Config();
  TIM_PWM_Config();
  while (1)
  {
  }
}



评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值