一、线程池简介
在web开发中,服务器需要接受并处理请求,所以会为一个请求来分配一个线程来进行处理。如果每次请求都新创建一个线程的话实现起来非常简便,但是存在一个问题。
如果并发的请求数量非常多,但每个线程执行的时间很短,这样就会频繁的创建和销毁线程,如此一来会大大降低系统的效率。可能出现服务器在为每个请求创建新线程和销毁线程上花费的时间和消耗的系统资源要比处理实际的用户请求的时间和资源更多。
那么有没有一种办法使执行完一个任务,并不被销毁,而是可以继续执行其他的任务呢?
这就是线程池的目的了。线程池为线程生命周期的开销和资源不足问题提供了解决方案。通过对多个任务重用线程,线程创建的开销被分摊到了多个任务上。
二、ThreadPoolExecutor简介
在 Java 5 之后,并发编程引入了一堆新的启动、调度和管理线程的API。Executor 框架便是 Java 5 中引入的,其内部使用了线程池机制,它在 java.util.cocurrent 包下,通过该框架来控制线程的启动、执行和关闭,可以简化并发编程的操作。因此,在 Java 5之后,通过 Executor 来启动线程比使用 Thread 的 start 方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免 this 逃逸问题——如果我们在构造器中启动一个线程,因为另一个任务可能会在构造器结束之前开始执行,此时可能会访问到初始化了一半的对象用 Executor 在构造器中。
三、ThreadPoolExecutor类图
Executor :
Executor 它是”执行者”接口,它是来执行任务的。准确的说,Executor提供了execute()接口来执行已提交的Runnable 任务的对象。Executor存在的目的是提供一种将”任务提交”与”任务如何运行”分离开来的机制。 它只包含一个函数接口:void execute(Runnable command)ExecutorService:
ExecutorService继承于Executor。它是”执行者服务”接口,它是为”执行者接口Executor”服务而存在的;准确的话,ExecutorService提供了”将任务提交给执行者的接口(submit方法)”,”让执行者执行任务(invokeAll,AbstractExecutorService
AbstractExecutorService是一个抽象类,它实现了ExecutorService接口。
AbstractExecutorService存在的目的是为ExecutorService中的函数接口提供了默认实现。ThreadPoolExecutor:
ThreadPoolExecutor就是大名鼎鼎的”线程池”。它继承于AbstractExecutorService抽象类。ScheduledExecutorService:
ScheduledExecutorService是一个接口,它继承于于ExecutorService。它相当于提供了”延时”和”周期执行”功能的ExecutorService。
ScheduledExecutorService提供了相应的函数接口,可以安排任务在给定的延迟后执行,也可以让任务周期的执行。ScheduledThreadPoolExecutor:
ScheduledThreadPoolExecutor继承于ThreadPoolExecutor,并且实现了ScheduledExecutorService接口。它相当于提供了”延时”和”周期执行”功能的ScheduledExecutorService。
ScheduledThreadPoolExecutor类似于Timer,但是在高并发程序中,ScheduledThreadPoolExecutor的性能要优于Timer。Executors:
Executors是个静态工厂类。它通过静态工厂方法返回ExecutorService、ScheduledExecutorService、ThreadFactory和 Callable 等类的对象。
四、ThreadPoolExecutor主要属性
// 阻塞队列。
private final BlockingQueue<Runnable> workQueue;
// 互斥锁
private final ReentrantLock mainLock = new ReentrantLock();
// 线程集合。一个Worker对应一个线程。
private final HashSet<Worker> workers = new HashSet<Worker>();
// “终止条件”,与“mainLock”绑定。
private final Condition termination = mainLock.newCondition();
// 线程池中线程数量曾经达到过的最大值。
private int largestPoolSize;
// 已完成任务数量
private long completedTaskCount;
// ThreadFactory对象,用于创建线程。
private volatile ThreadFactory threadFactory;
// 拒绝策略的处理句柄。
private volatile RejectedExecutionHandler handler;
// 保持线程存活时间。
private volatile long keepAliveTime;
private volatile boolean allowCoreThreadTimeOut;
// 核心池大小
private volatile int corePoolSize;
// 最大池大小
private volatile int maximumPoolSize;
- workers:workers是HashSet类型,即它是一个Worker集合。而一个Worker对应一个线程,也就是说线程池通过workers包含了”一个线程集合”。当Worker对应的线程池启动时,它会执行线程池中的任务;当执行完一个任务后,它会从线程池的阻塞队列中取出一个阻塞的任务来继续运行。wokers的作用是,线程池通过它实现了”允许多个线程同时运行”。
- workQueue: workQueue是BlockingQueue类型,即它是一个阻塞队列。当线程池中的线程数超过它的容量的时候,线程会进入阻塞队列进行阻塞等待。通过workQueue,线程池实现了阻塞功能。
- mainLock: mainLock是互斥锁,通过mainLock实现了对线程池的互斥访问。
- corePoolSize和maximumPoolSize:corePoolSize是”核心池大小”,maximumPoolSize是”最大池大小”。它们的作用是调整”线程池中实际运行的线程的数量”。例如,当新任务提交给线程池时(通过execute方法)。
a、如果此时,线程池中运行的线程数量< corePoolSize,则创建新线程来处理请求。
b、如果此时,线程池中运行的线程数量> corePoolSize,但是却< maximumPoolSize;则仅当阻塞队列满时才创建新线程。
c、如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。
d、如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,核心池大小和最大池大小的值是在创建线程池设置的;但是,也可以使用 setCorePoolSize(int) 和 setMaximumPoolSize(int) 进行动态更改。 - poolSize: poolSize是当前线程池的实际大小,即线程池中任务的数量。
- allowCoreThreadTimeOut和keepAliveTime:allowCoreThreadTimeOut表示是否允许”线程在空闲状态时,仍然能够存活”;而keepAliveTime是当线程池处于空闲状态的时候,超过keepAliveTime时间之后,空闲的线程会被终止。
- threadFactory:threadFactory是ThreadFactory对象。它是一个线程工厂类,”线程池通过ThreadFactory创建线程”。
- handler:handler是RejectedExecutionHandler类型。它是”线程池拒绝策略”的句柄,也就是说”当某任务添加到线程池中,而线程池拒绝该任务时,线程池会通过handler进行相应的处理”。
综上所说,线程池通过workers来管理”线程集合”,每个线程在启动后,会执行线程池中的任务;当一个任务执行完后,它会从线程池的阻塞队列中取出任务来继续运行。阻塞队列是管理线程池任务的队列,当添加到线程池中的任务超过线程池的容量时,该任务就会进入阻塞队列进行等待。
五、线程池使用示例
我们用Executors工具类创建一个线程池,先感受一下。代码如下 :
/**
*
* <p>线程池测试<p>
*
* Copyright © 2018永乐科技. All rights reserved.
* <p>@Title: ThreadPoolExecutorTest.java<p>
* <p>@Prject: demo <p>
* <p>@Package: demo.com.test.execute <p>
* <p>@author: keep_trying <p>
* <p>@date: 2018年1月10日 下午3:54:52 <p>
* <p>@version: V1.0 <p>
*/
public class ThreadPoolExecutorTest {
public static void main(String[] args) {
// 创建一个可重用固定线程数的线程池,线程池的大小为3
ExecutorService threadPool = Executors.newFixedThreadPool(3);
//创建10个任务
for (int i = 1; i < 11; i++) {
//把任务放到线程池中
threadPool.execute(new ThreadTest());
}
//关闭线程池
threadPool.shutdown();
}
}
class ThreadTest implements Runnable{
@Override
public void run() {
try {
System.out.println(Thread.currentThread().getName()+ " 在执行任务");
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
执行结果如下:
pool-1-thread-1 在执行任务
pool-1-thread-3 在执行任务
pool-1-thread-2 在执行任务
//2秒后执行的
pool-1-thread-1 在执行任务
pool-1-thread-2 在执行任务
pool-1-thread-3 在执行任务
//2秒后执行的
pool-1-thread-3 在执行任务
pool-1-thread-2 在执行任务
pool-1-thread-1 在执行任务
//2秒后执行的
pool-1-thread-3 在执行任务
说明:
主线程中创建了线程池pool,线程池的容量是3。即,线程池中最多能同时运行3个线程。
紧接着,前三个任务被执行,后7个任务在队列里进行等待,如果有任务执行完成,在选择
一个任务执行………最后,通过shutdown()关闭线程池。
六、线程池调度过程
图1
图2
图1中任务1,任务2,任务3在被线程执行,任务4、5、N在阻塞队列里等待被执行。
图2中任务2,任务3先执行完成,任务4、任务5继续被线程执行,任务6、7、N继续等待执行。
七、线程池的状态
线程池状态定义代码如下:
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
private static int ctlOf(int rs, int wc) { return rs | wc; }
说明:
ctl是一个AtomicInteger类型的原子对象。ctl记录了”线程池中的任务数量”和”线程池状态”2个信息。
ctl共包括32位。其中,高3位表示”线程池状态”,低29位表示”线程池中的任务数量”。
RUNNING – 对应的高3位值是111。
SHUTDOWN – 对应的高3位值是000。
STOP – 对应的高3位值是001。
TIDYING – 对应的高3位值是010。
TERMINATED – 对应的高3位值是011。
线程池各个状态之间的切换如下图所示:
- RUNNING
(01) 状态说明:线程池处在RUNNING状态时,能够接收新任务,以及对已添加的任务进行处理。
(02) 状态切换:线程池的初始化状态是RUNNING。换句话说,线程池被一旦被创建,就处于RUNNING状态!
在ctl的初始化代码中(如下),就是将线程池初始化为RUNNING状态,并且”任务数量”初始化为0。
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
SHUTDOWN
(01) 状态说明:线程池处在SHUTDOWN状态时,不接收新任务,但能处理已添加的任务。
(02) 状态切换:调用线程池的shutdown()接口时,线程池由RUNNING -> SHUTDOWN。STOP
(01) 状态说明:线程池处在STOP状态时,不接收新任务,不处理已添加的任务,并且会中断正在处理的任务。
(02) 状态切换:调用线程池的shutdownNow()接口时,线程池由(RUNNING or SHUTDOWN ) -> STOP。- TIDYING (发音:泰定 解释:整理; 使整洁( tidy的现在分词 ); 使整齐; 使有条理;)
(01) 状态说明:当所有的任务已终止,ctl记录的”任务数量”为0,线程池会变为TIDYING状态。当线程池变为TIDYING状态时,会执行钩子函数terminated()。terminated()在ThreadPoolExecutor类中是空的,若用户想在线程池变为TIDYING时,进行相应的处理;可以通过重载terminated()函数来实现。
(02) 状态切换:当线程池在SHUTDOWN状态下,阻塞队列为空并且线程池中执行的任务也为空时,就会由 SHUTDOWN -> TIDYING。
当线程池在STOP状态下,线程池中执行的任务为空时,就会由STOP -> TIDYING。 - TERMINATED
(发音:特目内tei的 解释:最终的,终点;)
(01) 状态说明:线程池彻底终止,就变成TERMINATED状态。
(02) 状态切换:线程池处在TIDYING状态时,执行完terminated()之后,就会由 TIDYING -> TERMINATED。
八、线程池拒绝策略
线程池拒绝策略简介
线程池的拒绝策略,是指当任务添加到线程池中被拒绝,而采取的处理措施。
当任务添加到线程池中之所以被拒绝,可能是由于:
- 第一,线程池异常关闭。
- 第二,任务数量超过线程池的最大限制。
线程池共包括4种拒绝策略,它们分别是:
- CallerRunsPolicy :当任务添加到线程池中被拒绝时,会在线程池当前正在运行的Thread线程池中处理被拒绝的任务。
- AbortPolicy :当任务添加到线程池中被拒绝时,它将抛出 RejectedExecutionException异常。线程池默认的处理策略是AbortPolicy!
- DiscardOldestPolicy : 当任务添加到线程池中被拒绝时,线程池会放弃等待队列中最旧的未处理任务,然后将被拒绝的任务添加到等待队列中。
DiscardPolicy : 当任务添加到线程池中被拒绝时,线程池将丢弃被拒绝的任务。
拒绝策略案例:
/**
*
* <p>线程池拒绝策略测试<p>
*
* Copyright © 2018永乐科技. All rights reserved.
* <p>@Title: ThreadPoolExecutorPolicyTest.java<p>
* <p>@Prject: demo <p>
* <p>@Package: demo.com.test.execute <p>
* <p>@author: keep_trying <p>
* <p>@date: 2018年1月11日 下午5:57:49 <p>
* <p>@version: V1.0 <p>
*/
public class ThreadPoolExecutorPolicyTest {
public static void main(String[] args) {
//创建线程池。线程池的"最大池大小"和"核心池大小"都为1"线程池"的阻塞队列容量为1
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(1, 1, 0, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(1));
// 设置线程池的拒绝策略为"抛出异常",不写也行
threadPool.setRejectedExecutionHandler(new ThreadPoolExecutor.AbortPolicy());
// 设置线程池的拒绝策略为"丢弃"
// threadPool.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardPolicy());
// 设置线程池的拒绝策略为"DiscardOldestPolicy"
// threadPool.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardOldestPolicy());
// 设置线程池的拒绝策略为"CallerRunsPolicy"
// threadPool.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//创建10个任务
for (int i = 1; i < 11; i++) {
//把任务放到线程池中
threadPool.execute(new ThreadTest());
}
//关闭线程池
threadPool.shutdown();
}
}
class ThreadTest1 implements Runnable{
@Override
public void run() {
try {
System.out.println(Thread.currentThread().getName()+ " 在执行任务");
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
执行结果:
Exception in thread "main" pool-1-thread-1 在执行任务
java.util.concurrent.RejectedExecutionException: Task demo.com.test.execute.ThreadTest@4e25154f rejected from java.util.concurrent.ThreadPoolExecutor@70dea4e[Running, pool size = 1, active threads = 1, queued tasks = 1, completed tasks = 0]
at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)
at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)
at demo.com.test.execute.ThreadPoolExecutorPolicyTest.main(ThreadPoolExecutorPolicyTest.java:29)
pool-1-thread-1 在执行任务
结果说明:线程池pool的”最大池大小”和”核心池大小”都为1,这意味着”线程池能同时运行的任务数量最大只能是1”。
线程池pool的阻塞队列是ArrayBlockingQueue,ArrayBlockingQueue是一个有界的阻塞队列,ArrayBlockingQueue的容量为1。这也意味着线程池的阻塞队列只能有一个线程池阻塞等待。
第1个任务直接放到Worker中,通过线程去执行;第2个任务放到阻塞队列中等待。在第3个任务到达时会抛出RejectedExecutionException。
其它情况自己测试一下吧,不一一介绍了。
九、源码分析
上面对线程池做了一个简单的介绍,下面以源码的角度分析一下线程池。
A、创建并初始化线程池
在上面【拒绝策略案例】的代码里有这么一段,源代码如下:
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(1, 1, 0, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(1));
ThreadPoolExecutor
这段代码就是创建一个线程池,那我们看一下它的的源代码:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
通过this调用到下面这段代码:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
//参数有效性验证
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
//参数有效性验证
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
// 核心池大小
this.corePoolSize = corePoolSize;
// 最大池大小
this.maximumPoolSize = maximumPoolSize;
// 线程池的等待队列
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
// 线程工厂对象
this.threadFactory = threadFactory;
// 拒绝策略的句柄
this.handler = handler;
}
说明:在ThreadPoolExecutor()的构造函数中,进行的是初始化工作。
在来构造函数中有 Executors.defaultThreadFactory(),defaultHandler 这两个参数
Executors.defaultThreadFactory
Executors.defaultThreadFactory()源代码如下:
public static ThreadFactory defaultThreadFactory() {
return new DefaultThreadFactory();
}
defaultThreadFactory()返回DefaultThreadFactory对象。Executors.java中的DefaultThreadFactory()源码如下:
static class DefaultThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix;
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
}
// 提供创建线程的API。
public Thread newThread(Runnable r) {
// 线程对应的任务是Runnable对象r
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
// 设为“非守护线程”
if (t.isDaemon())
t.setDaemon(false);
// 将优先级设为“Thread.NORM_PRIORITY”
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}
说明:ThreadFactory的作用就是提供创建线程的功能的线程工厂。
它是通过newThread()提供创建线程功能的,下面简单说说newThread()。newThread()创建的线程对应的任务是Runnable对象,它创建的线程都是“非守护线程”而且“线程优先级都是Thread.NORM_PRIORITY”。
defaultHandler
handler是ThreadPoolExecutor中拒绝策略的处理句柄。所谓拒绝策略,是指将任务添加到线程池中时,线程池拒绝该任务所采取的相应策略。我们在第八点中已经说了,这里就不在说了!
defaultHandler的定义如下:
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
AbortPolicy的源码如下:
public static class AbortPolicy implements RejectedExecutionHandler {
public AbortPolicy() { }
// 抛出异常
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
B、添加任务到线程池并且执行
在上面【拒绝策略案例】的代码里有这么一段,源代码如下:
threadPool.execute(new ThreadTest());
execute
execute(Runnable command)定义在ThreadPoolExecutor.java中,源码如下:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* clt记录着runState和workerCount
*/
int c = ctl.get();
/*
* workerCountOf方法取出低29位的值,表示当前活动的线程数;
* 如果当前活动线程数小于corePoolSize,则新建一个线程放入线程池中;
* 并把任务添加到该线程中。
*/
if (workerCountOf(c) < corePoolSize) {
/*
* addWorker中的第二个参数表示限制添加线程的数量是根据corePoolSize来判断还是maximumPoolSize来判断;
* 如果为true,根据corePoolSize来判断;
* 如果为false,则根据maximumPoolSize来判断
*/
if (addWorker(command, true))
return;
/*
* 如果添加失败,则重新获取ctl值
*/
c = ctl.get();
}
/*
* 如果当前线程池是运行状态并且任务添加到队列成功
*/
if (isRunning(c) && workQueue.offer(command)) {
// 重新获取ctl值
int recheck = ctl.get();
// 再次判断线程池的运行状态,如果不是运行状态,由于之前已经把command添加到workQueue中了,
// 这时需要移除该command
// 执行过后通过handler使用拒绝策略对该任务进行处理,整个方法返回
if (! isRunning(recheck) && remove(command))
reject(command);
/*
* 获取线程池中的有效线程数,如果数量是0,则执行addWorker方法
* 这里传入的参数表示:
* 1. 第一个参数为null,表示在线程池中创建一个线程,但不去启动;
* 2. 第二个参数为false,将线程池的有限线程数量的上限设置为maximumPoolSize,添加线程时根据maximumPoolSize来判断;
* 如果判断workerCount大于0,则直接返回,在workQueue中新增的command会在将来的某个时刻被执行。
*/
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
/*
* 如果执行到这里,有两种情况:
* 1. 线程池已经不是RUNNING状态;
* 2. 线程池是RUNNING状态,但workerCount >= corePoolSize并且workQueue已满。
* 这时,再次调用addWorker方法,但第二个参数传入为false,将线程池的有限线程数量的上限设置为maximumPoolSize;
* 如果失败则拒绝该任务
*/
else if (!addWorker(command, false))
reject(command);
}
简单来说,在执行execute()方法时如果线程池的状态一直是RUNNING时,执行过程如下:
- 如果
workerCount < corePoolSize
,则创建并启动一个线程来执行新提交的任务; - 如果
workerCount >= corePoolSize
,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中; - 如果
workerCount >= corePoolSize
并且workerCount <maximumPoolSize
,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务; - 如果
workerCount >= maximumPoolSize
,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务,
默认的处理方式是直接抛异常。
这里要注意一下addWorker(null, false);,也就是创建一个线程,但并没有传入任务,因为任务已经被添加到workQueue中了,所以worker在执行的时候,会直接从workQueue中获取任务。所以,在workerCountOf(recheck) == 0时执行addWorker(null, false);也是为了保证线程池在RUNNING状态下必须要有一个线程来执行任务。
execute执行流程图:
addWorker
addWorker(Runnable firstTask, boolean core)定义在ThreadPoolExecutor.java中,源码如下:
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
// 获取运行状态
int rs = runStateOf(c);
/*
* 这个if判断
* 如果rs >= SHUTDOWN,则表示此时不再接收新任务;
* 接着判断以下3个条件,只要有1个不满足,则返回false:
* 1. rs == SHUTDOWN,这时表示关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务
* 2. firsTask为空
* 3. 阻塞队列不为空
*
* 首先考虑rs == SHUTDOWN的情况
* 这种情况下不会接受新提交的任务,所以在firstTask不为空的时候会返回false;
* 然后,如果firstTask为空,并且workQueue也为空,则返回false,
* 因为队列中已经没有任务了,不需要再添加线程了
*/
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
// 获取线程数
int wc = workerCountOf(c);
// 如果wc超过CAPACITY,也就是ctl的低29位的最大值(二进制是29个1),返回false;
// 这里的core是addWorker方法的第二个参数,如果为true表示根据corePoolSize来比较,
// 如果为false则根据maximumPoolSize来比较。
//
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 尝试增加workerCount,如果成功,则跳出第一个for循环
if (compareAndIncrementWorkerCount(c))
break retry;
// 如果增加workerCount失败,则重新获取ctl的值
c = ctl.get(); // Re-read ctl
// 如果当前的运行状态不等于rs,说明状态已被改变,返回第一个for循环继续执行
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 根据firstTask来创建Worker对象
w = new Worker(firstTask);
// 每一个Worker对象都会创建一个线程
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
// rs < SHUTDOWN表示是RUNNING状态;
// 如果rs是RUNNING状态或者rs是SHUTDOWN状态并且firstTask为null,向线程池中添加线程。
// 因为在SHUTDOWN时不会在添加新的任务,但还是会执行workQueue中的任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// workers是一个HashSet
workers.add(w);
int s = workers.size();
// largestPoolSize记录着线程池中出现过的最大线程数量
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 启动线程
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
addWorker方法的主要工作是在线程池中创建一个新的线程并执行任务,firstTask参数用于指定新增的线程执行的第一个任务,如果firstTask为空的话只创建线程,core参数为true表示在新增线程时会判断当前活动线程数是否少于corePoolSize,false表示新增线程前需要判断当前活动线程数是否少于maximumPoolSize
注:这里的t.start()这个语句,启动时会调用Worker类中的run方法,Worker本身实现了Runnable接口,所以一个Worker类型的对象也是一个线程。
Worker类
线程池中的每一个线程被封装成一个Worker对象,ThreadPool维护的其实就是一组Worker对象,Worker源代码如下:
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state.
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
Worker类继承了AQS,并实现了Runnable接口,注意其中的firstTask和thread属性:firstTask用它来保存传入的任务;thread是在调用构造方法时通过ThreadFactory来创建的线程,是用来处理任务的线程。
在调用构造方法时,需要把任务传入,这里通过getThreadFactory().newThread(this);来新建一个线程,newThread方法传入的参数是this,因为Worker本身继承了Runnable接口,也就是一个线程,所以一个Worker对象在启动的时候会调用Worker类中的run方法。
Worker继承了AQS,使用AQS来实现独占锁的功能。为什么不使用ReentrantLock来实现呢?可以看到tryAcquire方法,它是不允许重入的,而ReentrantLock是允许重入的:
- lock方法一旦获取了独占锁,表示当前线程正在执行任务中;
- 如果正在执行任务,则不应该中断线程;
- 如果该线程现在不是独占锁的状态,也就是空闲的状态,说明它没有在处理任务,这时可以对该线程进行中断;
- 线程池在执行shutdown方法或tryTerminate方法时会调用interruptIdleWorkers方法来中断空闲的线程,interruptIdleWorkers方法会使用tryLock方法来判断线程池中的线程是否是空闲状态;
- 之所以设置为不可重入,是因为我们不希望任务在调用像setCorePoolSize这样的线程池控制方法时重新获取锁。如果使用ReentrantLock,它是可重入的,这样如果在任务中调用了如setCorePoolSize这类线程池控制的方法,会中断正在运行的线程。
所以,Worker继承自AQS,用于判断线程是否空闲以及是否可以被中断。
此外,在构造方法中执行了setState(-1);,把state变量设置为-1,为什么这么做呢?是因为AQS中默认的state是0,如果刚创建了一个Worker对象,还没有执行任务时,这时就不应该被中断,tryAquire方法在上面已经列出来。
tryAcquire方法是根据state是否是0来判断的,所以,setState(-1);将state设置为-1是为了禁止在执行任务前对线程进行中断。正因为如此,在runWorker方法中会先调用Worker对象的unlock方法将state设置为0.
在addWorker方法中有一段调用t.start();
,t.start()这个语句,启动时会调用Worker类中的run方法,种种调用到runWorker(Worker w),run方法如下:
public void run() {
runWorker(this);
}
runWorker
runWorker(Worker w) 源代码如下:
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
// 获取第一个任务
Runnable task = w.firstTask;
w.firstTask = null;
// 允许中断
w.unlock(); // allow interrupts
// 是否因为异常退出循环
boolean completedAbruptly = true;
try {
// 如果task为空,则通过getTask来获取任务
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
说明:
这里说明一下第一个if判断,目的是:
- 如果线程池正在停止,那么要保证当前线程是中断状态;
- 如果不是的话,则要保证当前线程不是中断状态;
这里要考虑在执行该if语句期间可能也执行了shutdownNow方法,shutdownNow方法会把状态设置为STOP,回顾一下STOP状态:
不能接受新任务,也不处理队列中的任务,会中断正在处理任务的线程。在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow() 方法会使线程池进入到该状态。
STOP状态要中断线程池中的所有线程,而这里使用Thread.interrupted()来判断是否中断是为了确保在RUNNING或者SHUTDOWN状态时线程是非中断状态的,因为Thread.interrupted()方法会复位中断的状态。
总结一下runWorker方法的执行过程:
- while循环不断地通过getTask()方法获取任务;
- getTask()方法从阻塞队列中取任务;
- 如果线程池正在停止,那么要保证当前线程是中断状态,否则要保证当前线程不是中断状态;
- 调用task.run()执行任务;
- 如果task为null则跳出循环,执行processWorkerExit()方法;
- runWorker方法执行完毕,也代表着Worker中的run方法执行完毕,销毁线程。
这里的beforeExecute方法和afterExecute方法在ThreadPoolExecutor类中是空的,留给子类来实现。completedAbruptly变量来表示在执行任务过程中是否出现了异常,在processWorkerExit方法中会对该变量的值进行判断。
在runWorker(Worker w)中有一段task = getTask()
getTask
getTask方法用来从阻塞队列中取任务,源代码如下:
private Runnable getTask() {
// timeOut变量的值表示上次从阻塞队列中取任务时是否超时
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
/*
* 如果线程池状态rs >= SHUTDOWN,也就是非RUNNING状态,再进行以下判断:
* 1. rs >= STOP,线程池是否正在stop;
* 2. 阻塞队列是否为空。
* 如果以上条件满足,则将workerCount减1并返回null。
* 因为如果当前线程池状态的值是SHUTDOWN或以上时,不允许再向阻塞队列中添加任务。
*/
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
// timed变量用于判断是否需要进行超时控制。
// allowCoreThreadTimeOut默认是false,也就是核心线程不允许进行超时;
// wc > corePoolSize,表示当前线程池中的线程数量大于核心线程数量;
// 对于超过核心线程数量的这些线程,需要进行超时控制
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
/*
* wc > maximumPoolSize的情况是因为可能在此方法执行阶段同时执行了setMaximumPoolSize方法;
* timed && timedOut 如果为true,表示当前操作需要进行超时控制,并且上次从阻塞队列中获取任务发生了超时
* 接下来判断,如果有效线程数量大于1,或者阻塞队列是空的,那么尝试将workerCount减1;
* 如果减1失败,则返回重试。
* 如果wc == 1时,也就说明当前线程是线程池中唯一的一个线程了。
*/
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
/*
* 根据timed来判断,如果为true,则通过阻塞队列的poll方法进行超时控制,如果在keepAliveTime时间内没有获取到任务,则返回null;
* 否则通过take方法,如果这时队列为空,则take方法会阻塞直到队列不为空。
*
*/
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
// 如果 r == null,说明已经超时,timedOut设置为true
timedOut = true;
} catch (InterruptedException retry) {
// 如果获取任务时当前线程发生了中断,则设置timedOut为false并返回循环重试
timedOut = false;
}
}
}
这里重要的地方是第二个if判断,目的是控制线程池的有效线程数量。由上文中的分析可以知道,在执行execute方法时,如果当前线程池的线程数量超过了corePoolSize且小于maximumPoolSize,并且workQueue已满时,则可以增加工作线程,但这时如果超时没有获取到任务,也就是timedOut为true的情况,说明workQueue已经为空了,也就说明了当前线程池中不需要那么多线程来执行任务了,可以把多于corePoolSize数量的线程销毁掉,保持线程数量在corePoolSize即可。
什么时候会销毁?当然是runWorker方法执行完之后,也就是Worker中的run方法执行完,由JVM自动回收。
getTask方法返回null时,在runWorker方法中会跳出while循环,然后会执行processWorkerExit方法。
processWorkerExit
private void processWorkerExit(Worker w, boolean completedAbruptly) {
// 如果completedAbruptly值为true,则说明线程执行时出现了异常,需要将workerCount减1;
// 如果线程执行时没有出现异常,说明在getTask()方法中已经已经对workerCount进行了减1操作,这里就不必再减了。
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//统计完成的任务数
completedTaskCount += w.completedTasks;
// 从workers中移除,也就表示着从线程池中移除了一个工作线程
workers.remove(w);
} finally {
mainLock.unlock();
}
// 根据线程池状态进行判断是否结束线程池
tryTerminate();
int c = ctl.get();
/*
* 当线程池是RUNNING或SHUTDOWN状态时,如果worker是异常结束,那么会直接addWorker;
* 如果allowCoreThreadTimeOut=true,并且等待队列有任务,至少保留一个worker;
* 如果allowCoreThreadTimeOut=false,workerCount不少于corePoolSize。
*/
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
至此,processWorkerExit执行完之后,工作线程被销毁,以上就是整个工作线程的生命周期,从execute方法开始,Worker使用ThreadFactory创建新的工作线程,runWorker通过getTask获取任务,然后执行任务,如果getTask返回null,进入processWorkerExit方法,整个线程结束,流程如图所示:
在processWorkerExit中有一段代码 tryTerminate();
tryTerminate()方法
源代码如下:
final void tryTerminate() {
for (;;) {
int c = ctl.get();
/*
* 当前线程池的状态为以下几种情况时,直接返回:
* 1. RUNNING,因为还在运行中,不能停止;
* 2. TIDYING或TERMINATED,因为线程池中已经没有正在运行的线程了;
* 3. SHUTDOWN并且等待队列非空,这时要执行完workQueue中的task;
*/
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
// 如果线程数量不为0,则中断一个空闲的工作线程,并返回
if (workerCountOf(c) != 0) { // Eligible to terminate
interruptIdleWorkers(ONLY_ONE);
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 这里尝试设置状态为TIDYING,如果设置成功,则调用terminated方法
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
// terminated方法默认什么都不做,留给子类实现
terminated();
} finally {
// 设置状态为TERMINATED
ctl.set(ctlOf(TERMINATED, 0));
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
C、关闭线程池
在上面【拒绝策略案例】的代码里有这么一段,源代码如下:
threadPool.shutdown();//关闭线程池
shutdown方法
shutdown方法要将线程池切换到SHUTDOWN状态,并调用interruptIdleWorkers方法请求中断所有空闲的worker,最后调用tryTerminate尝试结束线程池。
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 安全策略判断
checkShutdownAccess();
// 切换状态为SHUTDOWN
advanceRunState(SHUTDOWN);
// 中断空闲线程
interruptIdleWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
// 尝试结束线程池
tryTerminate();
}
这里思考一个问题:在runWorker方法中,执行任务时对Worker对象w进行了lock操作,为什么要在执行任务的时候对每个工作线程都加锁呢?
- 在getTask方法中,如果这时线程池的状态是SHUTDOWN并且workQueue为空,那么就应该返回null来结束这个工作线程,而使线程池进入SHUTDOWN状态需要调用shutdown方法;
- shutdown方法会调用interruptIdleWorkers来中断空闲的线程,interruptIdleWorkers持有mainLock,会遍历workers来逐个判断工作线程是否空闲。但getTask方法中没有mainLock;
- 在getTask中,如果判断当前线程池状态是RUNNING,并且阻塞队列为空,那么会调用workQueue.take()进行阻塞;
- 如果在判断当前线程池状态是RUNNING后,这时调用了shutdown方法把状态改为了SHUTDOWN,这时如果不进行中断,那么当前的工作线程在调用了workQueue.take()后会一直阻塞而不会被销毁,因为在SHUTDOWN状态下不允许再有新的任务添加到workQueue中,这样一来线程池永远都关闭不了了;
- 由上可知,shutdown方法与getTask方法(从队列中获取任务时)存在竞态条件;
- 解决这一问题就需要用到线程的中断,也就是为什么要用interruptIdleWorkers方法。在调用workQueue.take()时,如果发现当前线程在执行之前或者执行期间是中断状态,则会抛出InterruptedException,解除阻塞的状态;
- 但是要中断工作线程,还要判断工作线程是否是空闲的,如果工作线程正在处理任务,就不应该发生中断;
- 所以Worker继承自AQS,在工作线程处理任务时会进行lock,interruptIdleWorkers在进行中断时会使用tryLock来判断该工作线程是否正在处理任务,如果tryLock返回true,说明该工作线程当前未执行任务,这时才可以被中断。
interruptIdleWorkers方法
private void interruptIdleWorkers() {
interruptIdleWorkers(false);
}
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Worker w : workers) {
Thread t = w.thread;
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
interruptIdleWorkers遍历workers中所有的工作线程,若线程没有被中断tryLock成功,就中断该线程。
为什么需要持有mainLock?因为workers是HashSet类型的,不能保证线程安全。
shutdownNow方法
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(STOP);
// 中断所有工作线程,无论是否空闲
interruptWorkers();
// 取出队列中没有被执行的任务
tasks = drainQueue();
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}
shutdownNow方法与shutdown方法类似,不同的地方在于:
- 设置状态为STOP;
- 中断所有工作线程,无论是否是空闲的;
- 取出阻塞队列中没有被执行的任务并返回。
shutdownNow方法执行完之后调用tryTerminate方法,该方法在上文已经分析过了,目的就是使线程池的状态设置为TERMINATED。
十、线程池监控
线程池的监控
通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用
getTaskCount//线程池已经执行的和未执行的任务总数;
getCompletedTaskCount//线程池已完成的任务数量,该值小于等于taskCount;
getLargestPoolSize//线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过,也就是达到了maximumPoolSize;
getPoolSize//线程池当前的线程数量;
getActiveCount//当前线程池中正在执行任务的线程数量。
通过这些方法,可以对线程池进行监控,在ThreadPoolExecutor类中提供了几个空方法,如beforeExecute方法,afterExecute方法和terminated方法,可以扩展这些方法在执行前或执行后增加一些新的操作,例如统计线程池的执行任务的时间等,可以继承自ThreadPoolExecutor来进行扩展。
十一、问题分析
在分析了源码之后,我们在来看一些问题
问题1:线程池中的线程是如何被复用的?
我们知道在线程池中每个工作线程可以多次使用。这个功能就是线程复用。想要了解 Java 线程池是如何进行线程复用的,我们首先需要了解线程的生命周期。如下图:
在一个线程完整的生命周期中,它可能经历五种状态:新建(New)、就绪(Runnable)、运行(Running)、阻塞(Blocked)、终止(Zombie)。
在 Java中,Thread 通过new来新建一个线程,这个过程是是初始化一些线程信息,如线程名、id、线程所属group等,可以认为只是个普通的对象。调用Thread的start()后Java虚拟机会为其创建方法调用栈和程序计数器,同时将hasBeenStarted为true,之后如果再次调用start()方法就会有异常。
处于这个状态中的线程并没有开始运行,只是表示该线程可以运行了。至于该线程何时开始运行,取决于 JVM 里线程调度器的调度。当线程获取CPU后,run()方法会被调用。不要自己去调用Thread的run()方法。之后根据CPU的调度,线程就会在就绪—运行—阻塞间切换,直到run()方法结束或其他方式停止线程,进入终止状态。
因此,如果要实现线程的复用,我们必须要保证线程池中的线程保持存活状态(就绪、运行、阻塞)。那ThreadPoolExecutor是如何做的呢?
主要是runWorker 和 getTask方法,我把代码简化了如下:
private Runnable runWorker (Worker w) {
while (task != null || (task = getTask()) != null) {
w.lock();
task.run();
}
}
private Runnable getTask() {
Runnable r = workQueue.take();
return r;
}
我们可以看到任务是从 workQueue中获取的,这个 workQueue 就是我们初始化 ThreadPoolExecutor 时存放任务的 BlockingQueue队列,这个队列里的存放的都是将要执行的 Runnable任务。因为 BlockingQueue 是个阻塞队列,BlockingQueue.take()返回的是空,则线程进入进入等待状态直到 BlockingQueue 有新的对象被加入时唤醒阻塞的线程。所以一般情况下,Thread的run()方法不会结束,而是不断执行workQueue里的Runnable任务,这就达到了线程复用的目的了。
如果核心线程的大小为1,线程1执行任务1,任务3、4、N在阻塞队列里等待。其实线程1的run方法是一个while循环,他一直在获取阻塞队列里的任务,所以run方法是一直运行着的,那如果阻塞队列里的任务都执行完成了,那线程是不是会被回收啊,答案是不会的,因为存放任务的队列是阻塞队列(阻塞队列简介)
,如果发现队列为空的话,那就阻塞线程,此时执行任务的线程处于阻塞状态,如果阻塞队列里有任务存在了,那阻塞队列会唤醒处于等待状态的线程,线程继续执行任务。
问题2:线程池是如何控制最大并发数的?
简化后的addWorker代码:
private boolean addWorker(Runnable firstTask, boolean core) {
int wc = workerCountOf(c);
if (wc >= (core ? corePoolSize : maximumPoolSize)) {
return false;
}
w = new Worker(firstTask);
final Thread t = w.thread;
t.start();
}
如果通过addWorker()成功创建新的线程,则通过start()开启新线程,同时将firstTask作为这个Worker里的run()中执行的第一个任务。虽然每个Worker的任务是串行处理,但如果创建了多个Worker,因为共用一个workQueue,所以就会并行处理了。所以可以根据corePoolSize和maximumPoolSize来控制最大并发数。
问题3:执行任务时对Worker对象w进行了lock操作,为什么?
分析:
- 在getTask中,如果判断当前线程池状态是RUNNING,并且阻塞队列为空,那么会调用workQueue.take()阻塞线程;
- 如果在判断当前线程池状态是RUNNING后,这时调用了shutdown方法把状态改为了SHUTDOWN,这时如果不进行中断,那么当前的工作线程在调用了workQueue.take()后会一直阻塞而不会被销毁,因为在SHUTDOWN状态下不允许再有新的任务添加到workQueue中,这样一来线程池永远都关闭不了了;
- 由上可知,shutdown方法与getTask方法(从队列中获取任务时)存在竞态条件;
所以Worker继承自AQS,在工作线程处理任务时会进行lock(我在执行任务,我有锁不要打扰我执行执行,等我空闲了你在中断我),interruptIdleWorkers在进行中断时会使用tryLock来判断该工作线程是否正在处理任务,如果tryLock返回true,说明该工作线程当前未执行任务,这时才可以被中断。
问题4:如何设置线程池大小?
线程池究竟设成多大是要看你给线程池处理什么样的任务,任务类型不同,线程池大小的设置方式也是不同的。任务一般可分为:CPU密集型、IO密集型、混合型,对于不同类型的任务需要分配不同大小的线程池。
- CPU密集型任务 尽量使用较小的线程池
一般为CPU核心数+1。 因为CPU密集型任务使得CPU使用率很高,若开过多的线程数,只能增加上下文切换的次数,因此会带来额外的开销。
- IO密集型任务 可以使用稍大的线程池
一般为2*CPU核心数。 IO密集型任务CPU使用率并不高,因此可以让CPU在等待IO的时候去处理别的任务,充分利用CPU时间。
混合型任务 可以将任务分成IO密集型和CPU密集型任务,然后分别用不同的线程池去处理。
只要分完之后两个任务的执行时间相差不大,那么就会比串行执行来的高效。 因为如果划分之后两个任务执行时间相差甚远,那么先执行完的任务就要等后执行完的任务,最终的时间仍然取决于后执行完的任务,而且还要加上任务拆分与合并的开销,得不偿失。