20190501

本文探讨了深度学习中监督学习与无监督学习的区别与联系,解释了表示学习的概念,以及聚类算法如何为样本提供编码方式。此外,文章还讨论了随机梯度下降算法在大规模数据上的应用,以及矩阵的秩与其非零奇异值的关系。

之所以说监督学习和无监督学习之间并不存在一条严格的界限,是因为很难客观地区分监督者给定的一个值是特征(feature)还是目标(target)。

当深度学习网络的最后一层是一个softmax分类器时,我们可以把网络的前面部分看成是一种表示学习(Representation Learning)的计算单元。

一个聚类算法将样本分成k个不同的聚类(cluster),从另一个角度说,这个聚类算法其实是为样本中的每一个实例提供了一种k维的one-hot编码方式

随机梯度下降(Stochastic Gradient Descent)算法是用小规模的样本近似估计梯度的方法,适合在大规模数据上训练深度神经网络,但在逻辑回归、SVM等算法中的作用很有限。(错,SGD是单个样本,mini-batch GD是小批量)

矩阵的秩等于它的非零奇异值的个数
对某个矩阵做奇异值分解(Singular Value Decomposition)后,它非0的奇异值(Singular Value)个数是:()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值