In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of
digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2 10 20
Sample Output
7 19
题目大意:输入一个数t,代表有t组测试实例,在输入数n,求n!的位数
这道题要是自己硬写,估计会时间超限,但是用数学公式来写,分分钟算出来,百度了一下,确实是有公式的
方法1
log10(n!)
=log10(1∗2∗3…∗n)
=log10(1)+log10(2)+…+log10(n)
方法2
log10(n!) =log10(sqrt(2*PI*n))+n*log10(n/e))+1;
其中Pi ≈3.14159265 圆周率 e≈2.71828
用宏定义#define PI 3.14159265 #define e 2.71828 算,答案正确,但交上去就WA了。又百度了一下
double PI=acos(double(-1));// PI的值=反余弦函数 -1.0为Pi, 1为0。
double
e=exp(double(1));//e的值
#include <iostream>
#include <cmath>
using namespace std;
int digit_stirling(int n)
{
double PI=acos(double(-1));
double e=exp(double(1));
return floor(log10(sqrt(2*PI*n))+n*log10(n/e))+1;
}
int main()
{
int n,j,t;
cin>>t;
while(t--)
{
cin>>n;
cout<<digit_stirling(n)<<endl;
}
return 0;
}