【聚类算法】MiniBatchKMeans算法

MiniBatchKMeans相比KMeans增加了更多参数,如n_clusters指定k值,max_iter设定最大迭代次数,n_init用于多次运行并采样不同数据集初始化,batch_size决定采样集大小影响聚类效果,init选择初始质心方式,init_size设定质心候选样本数,reassignment_ratio控制质心重分配比例,max_no_improvement表示连续未改善聚类效果的次数限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

MiniBatchKMeans类主要参数

    MiniBatchKMeans类的主要参数比KMeans类稍多,主要有:

    1) n_clusters: 即我们的k值,和KMeans类的n_clusters意义一样。

    2)max_iter:最大的迭代次数, 和KMeans类的max_iter意义一样。

    3)n_init:用不同的初始化质心运行算法的次数。这里和KMeans类意义稍有不同,KMeans类里的n_init是用同样的训练集数据来跑不同的初始化质心从而运行算法。而MiniBatchKMeans类的n_init则是每次用不一样的采样数据集来跑不同的初始化质心运行算法。

              4)batch_size:即用来跑Mini Batch KMeans算法的采样集的大小,默认是100.如果发现数据集的类别较多或者噪音点较多,需要增加这个值以达到较好的聚类效果。

    5)init: 即初始值选择的方式,和KMeans类的init意义一样。

    6)init_size: 用来做质心初始值候选的样本个数,默认是batch_size的3倍,一般用默认值就可以了。

    7)reassignment_ratio: </

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值