DeepID3 face recognition
刚看完DeepID3[1],总结一下,还是先简单介绍一下网络结构吧。
Network Architecture
DeepID3有两种不同的结构,分别为DeepID3 net1,DeepID3 net2。相对DeepID2+[2],它的层数更多,网络更深。同时还借鉴了VGG net[3]和GoogLeNet[4],引入了inception layer,这个主要是用在了DeepID3 net2里面。网络中还出现了连续两个conv layer直接相连的情况,这样使得网络具有更大的receptive fields和更复杂的nonlinearity,同时还能限制参数的数量。直接上图,从图中就能看出网络的结构,这里就不多说了。
Perfomance
在训练样本上,DeepID3仍采用原来DeepID2+中使用的样本,在25个image patches产生的网络上作对比时,DeepID3 net1优势最为明显,而DeepID3 net2提升不大显著。
DeepID3在LFW上的face verification准确率为99.53%,性能上并没有比DeepID2+的99.47%提升多少。而且LFW数据集里面有三对人脸被错误地标记了,在更正这些错误的label后,两者准确率均为99.52%。
因此,作者对于具有更深的架构网络是否具有更强的优势没有下定论,这可以作为之后的研究方向。
在检查误判人脸时,作者在DeepID[5],DeepID2[6],DeepID2+,