Diskless Operation with PXE - Advanced Networking

本文介绍如何通过PXE(Intel预启动执行环境)配置FreeBSD网络启动环境,包括设置NFS、TFTP服务器,安装及配置DHCP服务器等步骤,并提供故障排查建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.freebsd.org/doc/handbook/

Chapter 30.8. Advanced Networking

30.8. Diskless Operation with PXE

Updated by Jean-François Dockès.
Reorganized and enhanced by Alex Dupre.

The Intel® Preboot eXecution Environment (PXE) allows an operating system to boot over the network. For example, a FreeBSD system can boot over the network and operate without a local disk, using file systems mounted from an NFS server. PXE support is usually available in the BIOS. To use PXE when the machine starts, select the Boot from networkoption in the BIOS setup or type a function key during system initialization.

In order to provide the files needed for an operating system to boot over the network, a PXE setup also requires properly configured DHCPTFTP, and NFS servers, where:

  • Initial parameters, such as an IP address, executable boot filename and location, server name, and root path are obtained from the DHCP server.

  • The operating system loader file is booted using TFTP.

  • The file systems are loaded using NFS.

When a computer PXE boots, it receives information over DHCP about where to obtain the initial boot loader file. After the host computer receives this information, it downloads the boot loader via TFTP and then executes the boot loader. In FreeBSD, the boot loader file is /boot/pxeboot. After /boot/pxeboot executes, the FreeBSD kernel is loaded and the rest of the FreeBSD bootup sequence proceeds, as described in Chapter 12, The FreeBSD Booting Process.

This section describes how to configure these services on a FreeBSD system so that other systems can PXE boot into FreeBSD. Refer to diskless(8) for more information.

Caution: 

As described, the system providing these services is insecure. It should live in a protected area of a network and be untrusted by other hosts.

30.8.1. Setting Up the PXE Environment

Written by Craig Rodrigues.

The steps shown in this section configure the built-in NFS and TFTP servers. The next section demonstrates how to install and configure the DHCP server. In this example, the directory which will contain the files used by PXE users is /b/tftpboot/FreeBSD/install. It is important that this directory exists and that the same directory name is set in both/etc/inetd.conf and /usr/local/etc/dhcpd.conf.

  1. Create the root directory which will contain a FreeBSD installation to be NFS mounted:

    # export NFSROOTDIR=/b/tftpboot/FreeBSD/install
    # mkdir -p ${NFSROOTDIR}
  2. Enable the NFS server by adding this line to /etc/rc.conf:

    nfs_server_enable="YES"
  3. Export the diskless root directory via NFS by adding the following to /etc/exports:

    /b -ro -alldirs
  4. Start the NFS server:

    # service nfsd start
  5. Enable inetd(8) by adding the following line to /etc/rc.conf:

    inetd_enable="YES"
  6. Uncomment the following line in /etc/inetd.conf by making sure it does not start with a # symbol:

    tftp dgram udp wait root /usr/libexec/tftpd tftpd -l -s /b/tftpboot

    Note: 

    Some PXE versions require the TCP version of TFTP. In this case, uncomment the second tftp line which contains stream tcp.

  7. Start inetd(8):

    # service inetd start
  8. Rebuild the FreeBSD kernel and userland (refer to Section 23.6, “Rebuilding World” for more detailed instructions):

    # cd /usr/src
    # make buildworld
    # make buildkernel
  9. Install FreeBSD into the directory mounted over NFS:

    # make installworld DESTDIR=${NFSROOTDIR}
    # make installkernel DESTDIR=${NFSROOTDIR}
    # make distribution DESTDIR=${NFSROOTDIR}
  10. Test that the TFTP server works and can download the boot loader which will be obtained via PXE:

    # tftp localhost
    tftp> get FreeBSD/install/boot/pxeboot
    Received 264951 bytes in 0.1 seconds
  11. Edit ${NFSROOTDIR}/etc/fstab and create an entry to mount the root file system over NFS:

    # Device                                         Mountpoint    FSType   Options  Dump Pass
    myhost.example.com:/b/tftpboot/FreeBSD/install       /         nfs      ro        0    0

    Replace myhost.example.com with the hostname or IP address of the NFS server. In this example, the root file system is mounted read-only in order to prevent NFSclients from potentially deleting the contents of the root file system.

  12. Set the root password in the PXE environment for client machines which are PXE booting :

    # chroot ${NFSROOTDIR}
    # passwd
  13. If needed, enable ssh(1) root logins for client machines which are PXE booting by editing ${NFSROOTDIR}/etc/ssh/sshd_config and enabling PermitRootLogin. This option is documented in sshd_config(5).

  14. Perform any other needed customizations of the PXE environment in ${NFSROOTDIR}. These customizations could include things like installing packages or editing the password file with vipw(8).

When booting from an NFS root volume, /etc/rc detects the NFS boot and runs /etc/rc.initdiskless. In this case, /etc and /var need to be memory backed file systems so that these directories are writable but the NFS root directory is read-only:

# chroot ${NFSROOTDIR}
# mkdir -p conf/base
# tar -c -v -f conf/base/etc.cpio.gz --format cpio --gzip etc
# tar -c -v -f conf/base/var.cpio.gz --format cpio --gzip var

When the system boots, memory file systems for /etc and /var will be created and mounted and the contents of the cpio.gz files will be copied into them.

30.8.2. Configuring the DHCP Server

The DHCP server does not need to be the same machine as the TFTP and NFS server, but it needs to be accessible in the network.

DHCP is not part of the FreeBSD base system but can be installed using the net/isc-dhcp42-server port or package.

Once installed, edit the configuration file, /usr/local/etc/dhcpd.conf. Configure the next-serverfilename, and root-path settings as seen in this example:

subnet 192.168.0.0 netmask 255.255.255.0 {
   range 192.168.0.2 192.168.0.3 ;
   option subnet-mask 255.255.255.0 ;
   option routers 192.168.0.1 ;
   option broadcast-address 192.168.0.255 ;
   option domain-name-servers 192.168.35.35, 192.168.35.36 ;
   option domain-name "example.com";

   # IP address of TFTP server
   next-server 192.168.0.1 ;

   # path of boot loader obtained via tftp
     filename "FreeBSD/install/boot/pxeboot" ;

   # pxeboot boot loader will try to NFS mount this directory for root FS
   option root-path "192.168.0.1:/b/tftpboot/FreeBSD/install/" ;

}

The next-server directive is used to specify the IP address of the TFTP server.

The filename directive defines the path to /boot/pxeboot. A relative filename is used, meaning that /b/tftpboot is not included in the path.

The root-path option defines the path to the NFS root file system.

Once the edits are saved, enable DHCP at boot time by adding the following line to /etc/rc.conf:

dhcpd_enable="YES"

Then start the DHCP service:

# service isc-dhcpd start

30.8.3. Debugging PXE Problems

Once all of the services are configured and started, PXE clients should be able to automatically load FreeBSD over the network. If a particular client is unable to connect, when that client machine boots up, enter the BIOS configuration menu and confirm that it is set to boot from the network.

This section describes some troubleshooting tips for isolating the source of the configuration problem should no clients be able to PXE boot.

  1. Use the net/wireshark package or port to debug the network traffic involved during the PXE booting process, which is illustrated in the diagram below.

    Figure 30.1.  PXE Booting Process with  NFS Root Mount
    PXE Booting Process with NFS Root Mount

    1

    Client broadcasts a DHCPDISCOVER message.

    2

    The DHCP server responds with the IP address, next-serverfilename, and root-path values.

    3

    The client sends a TFTP request to next-server, asking to retrieve filename.

    4

    The TFTP server responds and sends filename to client.

    5

    The client executes filename, which is pxeboot(8), which then loads the kernel. 

    When the kernel executes, the root file system specified by root-path is mounted over NFS.


  2. On the TFTP server, read /var/log/xferlog to ensure that pxeboot is being retrieved from the correct location. To test this example configuration:

    # tftp 192.168.0.1
    tftp> get FreeBSD/install/boot/pxeboot
    Received 264951 bytes in 0.1 seconds

    The BUGS sections in tftpd(8) and tftp(1) document some limitations with TFTP.

  3. Make sure that the root file system can be mounted via NFS. To test this example configuration:

    # mount -t nfs 192.168.0.1:/b/tftpboot/FreeBSD/install /mnt

内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型和基于规则的策略;然后研究动态规划(DP)算法和等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员和技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法和等效燃油消耗最小策略的应用;③学习工况识别算法的设计和实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理和应用场景,适合用于学术研究和工业实践。在学习过程中,建议结合代码调试和实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
内容概要:论文《基于KANN-DBSCAN带宽优化的核密度估计载荷谱外推》针对传统核密度估计(KDE)载荷外推中使用全局固定带宽的局限性,提出了一种基于改进的K平均最近邻DBSCAN(KANN-DBSCAN)聚类算法优化带宽选择的核密度估计方法。该方法通过对载荷数据进行KANN-DBSCAN聚类分组,采用拇指法(ROT)计算各簇最优带宽,再进行核密度估计和蒙特卡洛模拟外推。实验以电动汽车实测载荷数据为对象,通过统计参数、拟合度和伪损伤三个指标验证了该方法的有效性,误差显著降低,拟合度R²>0.99,伪损伤接近1。 适合人群:具备一定编程基础和载荷数据分析经验的研究人员、工程师,尤其是从事汽车工程、机械工程等领域的工作1-5年研发人员。 使用场景及目标:①用于电动汽车载荷谱编制,提高载荷预测的准确性;②应用于机械零部件的载荷外推,特别是非对称载荷分布和多峰扭矩载荷;③实现智能网联汽车载荷预测与数字孪生集成,提供动态更新的载荷预测系统。 其他说明:该方法不仅解决了传统KDE方法在复杂工况下的“过平滑”与“欠拟合”问题,还通过自适应参数机制提高了方法的普适性和计算效率。实际应用中,建议结合MATLAB代码实现,确保数据质量,优化参数并通过伪损伤误差等指标进行验证。此外,该方法可扩展至风电装备、航空结构健康监测等多个领域,未来研究方向包括高维载荷扩展、实时外推和多物理场耦合等。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值