SIFT,(Scale-invariant feature transform,SIFT),尺度不变特征转换。是用于图像处理领域的一种特征描述,具有旋转不变性、尺度不变性、亮度变化保持不变性,也就是说在图片发生旋转、伸缩、明暗变化时,图片的SIFT特征都保持稳定。
与HOG在整幅图像上均匀地提取梯度方向统计特征不同,SIFT是一种局部特征,可在图像中检测出关键点,SIFT特征提取分为在图片上寻找关键点和提取关键点邻域信息两部分,在提取特征时只关注稳定的关键点及其附近的信息,使得特征更加具有描述性。
SIFT算法的实质是在不同的尺度空间上查找关键点,并计算关键点方向。从一张图片中提取SIFT的步骤如下:
尺度空间的极值检测
特征点定位
特征方向赋值
特征点描述
特征匹配
一.尺度空间的极值检测
1.什么是尺度空间
尺度空间理论是通过对一张原始图像进行尺度变换,获得多张图像,多尺度下的尺度空间表示序列,对这些序列进行尺度空间主轮廓的提取,并以该主轮廓作为一种特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。
2.高斯核函数
在对有噪声的图像求取边缘点时,可以先用平滑滤波器对图像平滑,然后再对平滑后的图像求两阶微分,并检测局部极值点.
高斯卷积核是实现尺度变换的唯一线性核, 所以SIFT算法