tensorflow学习的第一个问题----Session()与InteractiveSession()的区别

    看了很多关于Session()与InteractiveSession()区别的解释,总结输入下:

1,具体区别

    tf.InteractiveSession()是一种交互式的session方式,它让自己成为了默认的session,也就是说用户在不需要指明用哪个session运行的情况下,就可以运行起来。例如代码

import tensorflow as tf
import numpy as np

a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
init=tf.global_variables_initializer()
sess=tf.InteractiveSession()
print (c.eval())

代码中没有使用我们常用的with tf.Session() as sess和result = sess.run(product)。

tf.InteractiveSession():它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。

tf.Session():需要在启动session之前构建整个计算图,然后启动该计算图。意思就是在我们使用tf.InteractiveSession()来构建会话的时候,我们可以先构建一个session然后再定义操作(operation),如果我们使用tf.Session()来构建会话我们需要在会话构建之前定义好全部的操作(operation)然后再构建会话。


2,两个代码作为对比:

1,使用tf.InteractiveSession()的形式:

import tensorflow as tf
import numpy as np

a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
init=tf.global_variables_initializer()
sess=tf.InteractiveSession()
print (c.eval())

2,使用tf.Session()的形式:

import tensorflow as tf
import numpy as np

a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
    #print (sess.run(c))
    print(c.eval())
知乎上有一个比较形象的解释:

InteractiveSession 可以想像成 command, 一边敲command一边执行。

Session可以想象成 job, 写好了全部code后扔到服务器自己执行了。



如果理解有误敬请指导.


 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值