第十周——项目一(2)—二叉树的构造

本文介绍了三种构造二叉树的方法:通过先序和中序序列、后序和中序序列构造二叉树的递归算法,以及从顺序存储结构转换为二叉链存储结构的过程。
/*            
 * Copyright (c) 2017,烟台大学计算机学院        
 * All right reserved.            
 * 文件名称:btree  
 * 作者:尹娜           
 * 完成日期:2017年11月9日            
 * 版本号:v1.0           
 *            
 * 问题描述:二叉树遍历的递归算法     
 * 输入描述:标准函数输入            
 * 程序输出:二叉树序列       
*/       
(btreee.h见 算法库

1.由先序序列和中序序列构造二叉树



#include <stdio.h>
#include <malloc.h>
#include "btree.h"

BTNode *CreateBT1(char *pre,char *in,int n)
/*pre存放先序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
    BTNode *s;
    char *p;
    int k;
    if (n<=0) return NULL;
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=*pre;
    for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k
        if (*p==*pre)                       //pre指向根结点
            break;                          //在in中找到后退出循环
    k=p-in;                                 //确定根结点在in中的位置
    s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树
    s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
    return s;
}

int main()
{
    ElemType pre[]="ABDGCEF",in[]="DGBAECF";
    BTNode *b1;
    b1=CreateBT1(pre,in,7);
    printf("b1:");
    DispBTNode(b1);
    printf("\n");
    return 0;
}
运行结果:


2.由后序序列和中序序列构造二叉树


#include <stdio.h>
#include <malloc.h>
#include "btree.h"

BTNode *CreateBT2(char *post,char *in,int n)
/*post存放后序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
    BTNode *s;
    char r,*p;
    int k;
    if (n<=0) return NULL;
    r=*(post+n-1);                          //根结点值
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=r;
    for (p=in; p<in+n; p++)                 //在in中查找根结点
        if (*p==r)
            break;
    k=p-in;                                 //k为根结点在in中的下标
    s->lchild=CreateBT2(post,in,k);         //递归构造左子树
    s->rchild=CreateBT2(post+k,p+1,n-k-1);  //递归构造右子树
    return s;
}

int main()
{
    ElemType in[]="DGBAECF",post[]="GDBEFCA";
    BTNode *b2;
    b2=CreateBT2(post,in,7);
    printf("b2:");
    DispBTNode(b2);
    printf("\n");
    return 0;
}

运行结果:


3.由顺序存储结构转为二叉链存储结构 


#include <stdio.h>
#include <malloc.h>
#include "btree.h"
#define N 30
typedef ElemType SqBTree[N];
BTNode *trans(SqBTree a,int i)
{
    BTNode *b;
    if (i>N)
        return(NULL);
    if (a[i]=='#')
        return(NULL);           //当节点不存在时返回NULL
    b=(BTNode *)malloc(sizeof(BTNode)); //创建根节点
    b->data=a[i];
    b->lchild=trans(a,2*i);                 //递归创建左子树
    b->rchild=trans(a,2*i+1);               //递归创建右子树
    return(b);                              //返回根节点
}
int main()
{
    BTNode *b;
    ElemType s[]="0ABCD#EF#G####################";
    b=trans(s,1);
    printf("b:");
    DispBTNode(b);
    printf("\n");
    return 0;
}

运行结果:


【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍了基于Matlab的建模与仿真方法。通过对四轴飞行器的动力学特性进行分析,构建了非线性状态空间模型,并实现了姿态与位置的动态模拟。研究涵盖了飞行器运动方程的建立、控制系统设计及数值仿真验证等环节,突出非线性系统的精确建模与仿真优势,有助于深入理解飞行器在复杂工况下的行为特征。此外,文中还提到了多种配套技术如PID控制、状态估计与路径规划等,展示了Matlab在航空航天仿真中的综合应用能力。; 适合人群:具备定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程技术人员,尤其适合研究生及以上层次的研究者。; 使用场景及目标:①用于四轴飞行器控制系统的设计与验证,支持算法快速原型开发;②作为教学工具帮助理解非线性动力学系统建模与仿真过程;③支撑科研项目中对飞行器姿态控制、轨迹跟踪等问题的深入研究; 阅建议:建议者结合文中提供的Matlab代码进行实践操作,重点关注动力学建模与控制模块的实现细节,同时可延伸学习文档中提及的PID控制、状态估计等相关技术内容,以全面提升系统仿真与分析能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

promise~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值