“中国剩余定理”简介、算理及其应用 |
![]() | ||
我国古代数学名著《孙子算经》中,记载这样一个问题: “今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何。”用现在的话来说就是:“有一批物品,3个3个地数余2个,5个5个地数余3个,7个7个地数余2个,问这批物品最少有多少个?” 这个问题的解题思路,被称为“孙子问题”、“鬼谷算”、“隔墙算”、“韩信点兵”等等。那么,这个问题怎呢?明朝数学家程大位把这一解法编成四句歌诀: 《孙子算经》的“物不知数”题虽然开创了一次同余式研究的先河,但由于题目比较简单,甚至用试猜的方法也能求得,所以尚没有上升到一套完整的计算程序和理论的高度。真正从完整的计算程序和理论上解决这个问题的,是南宋时期的数学家秦九韶。秦九韶于公元1247年写成的《数书九章》一书中提出了一个数学方法“大衍求一术”,系统地论述了一次同余式组解法的基本原理和一般程序。
先写出一个两位数62,接着在62右端写这两个数字的和为8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123……,则这个整数的数字之和是( )。
(2006-5)÷10=200....1 17+35*200+1=7018 前面的62810数字和为17 后面开始,以“1123581347”为循环节 共循环10次,每次的和为35 最后余1,就加上1 所以结果是17+35*200+1=7018
|