核逻辑回归--kernel logistics regression

博客内容主要围绕基于sklearn实现anova核逻辑回归展开,涉及信息技术领域中机器学习算法的应用,利用sklearn库完成特定的逻辑回归任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于sklearn实现anova核逻辑回归

import numpy as np
from sklearn.metrics.pairwise import check_pairwise_arrays
from scipy.linalg import cholesky
from sklearn.linear_model import LogisticRegression

def anova_kernel(X, Y=None, gamma=None, p=1):
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1. / X.shape[1]

    diff = X[:, None, :] - Y[None, :, :]
    diff **= 2
    diff *= -gamma
    np.exp(diff, out=diff)
    K = diff.sum(axis=2)
    K **= p
    return K

# Kernel matrix based on X matrix of all data points
K = anova_kernel(X)
R = cholesky(K, lower=False)

# Define the model
clf = LogisticRegression()

# Here, I assume that you have splitted the data and here, traina re the indices for the training set
clf.fit(R[train], y_train)
preds = clf.predict(R[test])¨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值