欧几里得算法和扩展欧几里得算法

欧几里得算法


欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。 

基本代码实现:

1 int gcd(int a,int b)
2 {
3     if(b==0)
4         return a;
5     return
6         gcd(b,a%b);
7 }

 扩展欧几里得算法

已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y(其中一个很可能是负数),使它们满足贝祖等式ax + by = \gcd(a, b).。有两个数a,b,对它们进行辗转相除法,可得它们的最大公约数——这是众所周知的。然后,收集辗转相除法中产生的式子,倒回去,可以得到ax+by=gcd(a,b)的整数解。

用类似辗转相除法,求二元一次不定方程47x+30y=1的整数解。

a,b为给定的值,通过gcd求解的方法求47与30的最大公约数(即a,b的最大公约数)

  • 47=30*1+17
  • 30=17*1+13
  • 17=13*1+4
  • 13=4*3+1
  • gcd(a,b)=gcd(b,a%b)

然后把它们改写成“余数等于”的形式

  • 17=47*1+30*(-1) //式1
  • 13=30*1+17*(-1) //式2
  • 4=17*1+13*(-1) //式3
  • 1=13*1+4*(-3)

然后把它们“倒回去”

  • 1=13*1+4*(-3) //应用式3
  • 1=13*1+[17*1+13*(-1)]*(-3)
  • 1=13*4+17*(-3) //应用式2
  • 1=[30*1+17*(-1)]*4+17*(-3)
  • 1=30*4+17*(-7) //应用式1
  • 1=30*4+[47*1+30*(-1)]*(-7)
  • 1=30*11+47*(-7)

得解x=-7, y=11。

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

其实大致意思就是a 和 b 的最大公约数是 gcd(a,b) ,那么,我们一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 这是一个不定方程(其实是一种丢番图方程),有多解是一定的,但是只要我们找到一组特殊的解 x0 和 y0 那么,我们就可以用 x0 和 y0 表示出整个不定方程的通解:

        x = x0 + (b/gcd)*t

        y = y0 – (a/gcd)*t

    为什么不是:

        x = x0 + b*t

        y = y0 – a*t

  那是因为:

    b/gcd 是 b 的因子, a/gcd 是 a 的因子是吧?那么,由于 t的取值范围是整数,你说 (b/gcd)*t 取到的值多还是 b*t 取到的值多?同理,(a/gcd)*t 取到的值多还是 a*gcd 取到的值多?那肯定又要问了,那为什么不是更小的数,非得是 b/gcd 和a/gcd ?

    注意到:我们令 B = b/gcd , A = a、gcd , 那么,A 和 B 一定是互素的吧?这不就证明了 最小的系数就是 A 和 B 了吗?要是实在还有什么不明白的,看看《基础数论》(哈尔滨工业大学出版社),这本书把关于不定方程的通解讲的很清楚

    现在,我们知道了一定存在 x 和 y 使得 : a*x + b*y = gcd , 那么,怎么求出这个特解 x 和 y 呢?只需要在欧几里德算法的基础上加点改动就行了。

    我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd

    当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

    假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?

    我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

        gcd = b*x1 + (a-(a/b)*b)*y1

            = b*x1 + a*y1 – (a/b)*b*y1

            = a*y1 + b*(x1 – a/b*y1)

    对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

    这里:

        x = y1

        y = x1 – a/b*y1


01 证明:设 a>b。
02  
03   推理1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;//推理1
04  
05   推理2,ab!=0 时
06  
07   设 ax1+by1=gcd(a,b);
08  
09   bx2+(a mod b)y2=gcd(b,a mod b);
10  
11   根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
12  
13   则:ax1+by1=bx2+(a mod b)y2;
14  
15   即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
16  
17   根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;//推理2
18  
19      这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
20  
21    上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

扩展欧几里德的递归代码:

01 #include <iostream>
02 using namespace std;
03  
04 int exgcd(int a,int b,int & x,int & y){
05     if(b == 0){
06         //根据上面的推理1,基本情况
07         x = 1;
08         y = 0;
09         return a;
10     }
11     int r = exgcd(b, a%b, x, y);
12     //根据推理2
13     int t = y;
14     y = x - (a/b)*y;
15     x = t;
16     return r;
17 }
18  
19 int main() {
20     int x,y;
21     exgcd(47,30,x,y);
22     cout << "47x+30y=1 的一个整数解为: x=" << x << ", y=" << y << endl;
23     return 0;
24 }

非递归实现,比上面的看上去要复杂了不少,不熟悉的话直接用上面的就可以:

01 int exgcd(int m,int n,int &x,int &y)
02 {
03     int x1,y1,x0,y0;
04     x0=1; y0=0;
05     x1=0; y1=1;
06     x=0; y=1;
07     int r=m%n;
08     int q=(m-r)/n;
09     while(r)
10     {
11         x=x0-q*x1; y=y0-q*y1;
12         x0=x1; y0=y1;
13         x1=x; y1=y;
14         m=n; n=r; r=m%n;
15         q=(m-r)/n;
16     }
17     return n;
18 }

扩展欧几里德算法的应用

(1)求解不定方程

用扩展欧几里得算法解不定方程ax+by=c;

这个应该比较好理解了,两个可以同乘以k

1 bool linear_equation(int a,int b,int c,int &x,int &y)
2 {
3     int d=exgcd(a,b,x,y);
4     if(c%d)
5         return false;
6     int k=c/d;
7     x*=k; y*=k;    //求得的只是其中一组解
8     return true;
9 }

(2)求解模线性方程(线性同余方程

同余方程 ax≡b (mod n) (也就是 ax % n = b) 对于未知数 x 有解,当且仅当 gcd(a,n) | b (也就是 b % (gcd(a,n))==0 )。且方程有解时,方程有 gcd(a,n) 个解。

求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)

1 在方程  3x ≡ 2 (mod 6) 中, d = gcd(3,6) = 3 ,3 不整除 2,因此方程无解。
2  
3 在方程 5x ≡ 2 (mod 6) 中, d = gcd(5,6) = 1,1 整除 2,因此方程在{0,1,2,3,4,5} 中恰有一个解: x=4。

证明略去,直接说算法:

首先看一个简单的例子:

5x=4(mod3)

解得x = 2,5,8,11,14…….

由此可以发现一个规律,就是解的间隔是3.

那么这个解的间隔是怎么决定的呢?

如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了.

我们设解之间的间隔为dx.

那么有

a*x = b(mod n);

a*(x+dx) = b(mod n);

两式相减,得到:

a*dx(mod n)= 0;

也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的.

设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d.

即a*dx = a*n/d;

所以dx = n/d. (d = gcd(a,n) )

因此解之间的间隔就求出来了.

01 bool modular_linear_equation(int a,int b,int n)
02 {
03     int x,y,x0,i;
04     int d=exgcd(a,n,x,y);
05     if(b%d)
06         return false;
07     x0=x*(b/d)%n;   //特解
08     for(i=1;i<d;i++)
09         printf("%d\n",(x0+i*(n/d))%n);
10     return true;
11 }

 (3)求解模的逆元;

同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。

在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。

这时称求出的 x 为 a 的对模 n 乘法的逆元。

对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程

ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。


    扩展欧几里德算法

    谁是欧几里德?自己百度去

    先介绍什么叫做欧几里德算法

    有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的naïve ,那怎么做?

    欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下:

    

    由于是用递归写的,所以看起来很简洁,也很好记忆。那么什么是扩展欧几里德呢?

    现在我们知道了 a 和 b 的最大公约数是 gcd ,那么,我们一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 这是一个不定方程(其实是一种丢番图方程),有多解是一定的,但是只要我们找到一组特殊的解 x0 和 y0 那么,我们就可以用 x0 和 y0 表示出整个不定方程的通解:

        x = x0 + (b/gcd)*t

        y = y0 – (a/gcd)*t

    为什么不是:

        x = x0 + b*t

        y = y0 – a*t

    这个问题也是在今天早上想通的,想通之后忍不住喷了自己一句弱逼。那是因为:

    b/gcd 是 b 的因子, a/gcd 是 a 的因子是吧?那么,由于 t的取值范围是整数,你说 (b/gcd)*t 取到的值多还是 b*t 取到的值多?同理,(a/gcd)*t 取到的值多还是 a*gcd 取到的值多?那肯定又要问了,那为什么不是更小的数,非得是 b/gcd 和a/gcd ?

    注意到:我们令 B = b/gcd , A = a、gcd , 那么,A 和 B 一定是互素的吧?这不就证明了 最小的系数就是 A 和 B 了吗?要是实在还有什么不明白的,看看《基础数论》(哈尔滨工业大学出版社),这本书把关于不定方程的通解讲的很清楚

    现在,我们知道了一定存在 x 和 y 使得 : a*x + b*y = gcd , 那么,怎么求出这个特解 x 和 y 呢?只需要在欧几里德算法的基础上加点改动就行了。

    我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd

    当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

    假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?

    我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

        gcd = b*x1 + (a-(a/b)*b)*y1

            = b*x1 + a*y1 – (a/b)*b*y1

            = a*y1 + b*(x1 – a/b*y1)

    对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

    这里:

        x = y1

        y = x1 – a/b*y1

    以上就是扩展欧几里德算法的全部过程,依然用递归写:

    

    依然很简短,相比欧几里德算法,只是多加了几个语句而已。

    这就是理论部分,欧几里德算法部分我们好像只能用来求解最大公约数,但是扩展欧几里德算法就不同了,我们既可以求出最大公约数,还可以顺带求解出使得: a*x + b*y = gcd 的通解 x 和 y

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值