function [CRR,y_hat]=myNN(Test_Data,Train_Data,K)
%Train_data.X: M*M
%test_data.X: M*N
%Train_data.y: 1*M
%test_data.y: 1*N
Number_Samples=length(Test_Data.y);
Number_Train_Samples=length(Train_Data.y);
y_hat=zeros(1,Number_Samples);
for tmpC1 = 1:Number_Samples
%1NN
% [junk1,tmpInd]=min(Test_Data.X(tmpC1,:));
% y_hat(tmpC1) = Train_Data.y(tmpInd);
%KNN
[a,b]=sort(Test_Data.X(tmpC1,:));
K_labels = Train_Data.y(b(1:K));
[~,K] = size(K_labels);
class_count = zeros(1,max(Test_Data.y));
for i=1:K
class_index = K_labels(i);
class_count(class_index) = class_count(class_index) + 1;
end
[~,y_hat(tmpC1) ]= max(class_count);
end
%Train_data.X: M*M
%test_data.X: M*N
%Train_data.y: 1*M
%test_data.y: 1*N
Number_Samples=length(Test_Data.y);
Number_Train_Samples=length(Train_Data.y);
y_hat=zeros(1,Number_Samples);
for tmpC1 = 1:Number_Samples
%1NN
% [junk1,tmpInd]=min(Test_Data.X(tmpC1,:));
% y_hat(tmpC1) = Train_Data.y(tmpInd);
%KNN
[a,b]=sort(Test_Data.X(tmpC1,:));
K_labels = Train_Data.y(b(1:K));
[~,K] = size(K_labels);
class_count = zeros(1,max(Test_Data.y));
for i=1:K
class_index = K_labels(i);
class_count(class_index) = class_count(class_index) + 1;
end
[~,y_hat(tmpC1) ]= max(class_count);
end
CRR=1-length(find((y_hat-Test_Data.y)~=0))/Number_Samples
参考网址:http://blog.youkuaiyun.com/rk2900/article/details/9080821

本文详细介绍了KNN算法中的1NN部分,包括如何使用最小距离选择最近邻居进行预测,以及如何在训练数据集中寻找最相似的数据点。通过实现函数,展示了在测试数据集上的应用过程,包括数据预处理、距离计算、类别计数和最终预测结果的生成。文章还提供了实际案例,说明了该方法在分类任务中的有效性。
1424

被折叠的 条评论
为什么被折叠?



