
算法
子穹
懂一点图像处理,喜欢算法和编程
展开
-
Hough变换背后的机制
The Hough transform is an incredible tool that lets you identify lines. Not just lines, but other shapes as well. In this article, I’ll talk about the mechanics behind the Hough transform. It will inv转载 2014-05-11 23:44:27 · 752 阅读 · 0 评论 -
SVM入门(七)为何需要核函数
生存?还是毁灭?——哈姆雷特可分?还是不可分?——支持向量机之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理。如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使得它的适用范围大大缩小,而它的很多优点我们实在不原意放弃,怎么办呢?是否有某种方法,让线性不可分的数据变得线性可分呢?有!其思想说来也简单,来用一转载 2014-04-26 14:01:26 · 460 阅读 · 0 评论 -
SVM入门(六)线性分类器的求解——问题的转化,直观角度
让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图,圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例。我们想求得这样一个线性函数(在n维空间中的线性函数):g(x)=wx+b使得所有属于正类的点x+代入以后有g(x+)≥1,而所有属于负类的点x-代入后有g(x-)≤-1(之所以总跟1比转载 2014-04-26 13:58:58 · 486 阅读 · 0 评论 -
SVM入门(八)松弛变量
现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的。就像下图这样: 圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数量嘛,当然很大了)。现在想象我们有另一个训练集,只比原先这个训练集多了一篇文章,映射到高维空间以后(当然,也使用了相同的核函数),也就多了一个样本点,但是这个样本的位置是这样的: 就是图中黄色那个点,它是方形的,转载 2014-04-26 14:02:32 · 539 阅读 · 0 评论 -
SVM入门(十)将SVM用于多类分类(完)
从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别。如何由两类分类器得到多类分类器,就是一个值得研究的问题。还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标转载 2014-04-26 14:04:46 · 703 阅读 · 0 评论 -
SVM入门(九)松弛变量(续)
接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C。回头看一眼引入了松弛变量以后的优化问题:注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们)。这个式子是以前做SVM的人写的,大家也就这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用转载 2014-04-26 14:03:41 · 749 阅读 · 0 评论 -
SVM入门(五)线性分类器的求解——问题的描述Part2
从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示:(式1)约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束。关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(转载 2014-04-26 13:57:20 · 567 阅读 · 0 评论 -
SVM入门(四)线性分类器的求解——问题的描述Part1
上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?回头再看看我们对间隔和几何间隔的定义:间隔:δ=y(wx+b)=|g(x)|几何间隔: 可以看出δ=||w||δ几何。注意到几何间隔与||w||是成反比的,因此最大化几何间隔与转载 2014-04-26 13:56:14 · 501 阅读 · 0 评论 -
SVM入门(一)至(三)
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无转载 2014-04-26 13:53:07 · 503 阅读 · 0 评论 -
PCA以及降维的思想
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。当然我并不打算把文章写成转载 2014-04-26 21:27:39 · 2488 阅读 · 0 评论