巴斯卡三角形和杨辉三角c语言实现(三种方法)

本文介绍了三种不同的方法来输出杨辉三角:不使用数组的递推计算法、使用二维数组的传统方法以及利用一维数组实现的动态更新方案。每种方法都提供了完整的C/C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

// bashika.cpp : 定义控制台应用程序的入口点。
//


#include "stdafx.h"
#define METHOD1
//#define METHOD2
//#define  METHOD3


//不用数组进行输出杨辉三角也就是
#ifdef METHOD1

int out_value(int n ,int j)
{
int p=1;
for (int i=1;i<=j;i++)
{
p=p*(n-i+1)/i;
}
return p;
}
int _tmain(int argc, _TCHAR* argv[])
{
int n;
printf("please input the number ");
while(scanf("%d",&n))
{
for (int i=0;i<n;i++)
{
for (int j=0;j<i+1;j++)
{
if (j==0)
{
for (int r=1;r<=n-i-1;r++)
{
printf(" ");

}
else printf("");
printf("%3d",out_value(i,j));
}
printf("\n");
}
}
return 0;
}
#endif




#ifdef METHOD2
//杨辉三角用二维数组进行输出
#include <stdio.h>
#define N 8
int main( )
{
int a[N][N + 1] = {0, 1}, i, j;
for (i = 1; i < N; i ++)
for (j = 1; j <= i + 1; j ++ )
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
for (i = 0; i < N; i ++)
{
int count=0;
for (j = 0; j <= 2 * (N - i); j ++ )
{
printf(" ");
count++;
}
printf("%d",count);
for (j = 1; j <= i + 1; j ++ )
printf("%4d", a[i][j]);
printf("\n");
}
}
#endif
//// 杨辉三角输出用一位数组进行输出
#ifdef METHOD3


#include <iostream>
int main()
{
int n;
printf("please input the number of n\n");
while(scanf("%d",&n))
{
int a[17]={1},b[17];
if (n>17)
{
printf("error");
exit(0);
}

for (int i=0;i<n;i++)
{
b[0]=a[0];
for (int j=1;j<=i;j++)
{
b[j]=a[j-1]+a[j];
}
for (int m=0;m<=i;m++)
{
a[m]=b[m];
printf("%4d",a[m]);
}
printf("\n");
}
}
return 0;
}
 #endif
1.汉若塔........................................................................................................................................................2 2.费式数列....................................................................................................................................................2 3. 巴斯卡三角形..........................................................................................................................................3 4.三色棋........................................................................................................................................................4 5.老鼠走迷官 (一)....................................................................................................................................5 6.老鼠走迷官 (二)....................................................................................................................................7 7.骑士走棋盘................................................................................................................................................8 8.八皇后...................................................................................................................................................... 11 9.八枚银币..................................................................................................................................................12 10.生命游戏................................................................................................................................................14 11.字串核对................................................................................................................................................16 12.双色、三色河内塔................................................................................................................................18 13.背包问题 (Knapsack Problem)..........................................................................................................21 14.蒙地卡罗法求 PI...................................................................................................................................25 15.Eratosthenes 筛选求质数.......................................................................................................................26 16.超长整数运算 (大数运算)................................................................................................................27 17.长 PI.......................................................................................................................................................29 18.最大公因数、最小公倍数、因式分解.................................................................................................31 19.完美数....................................................................................................................................................34 20.阿姆斯壮数............................................................................................................................................36 21.最大访客数............................................................................................................................................37 22.中序式转后序式 (前序式)................................................................................................................39 23.后序式的运算........................................................................................................................................42 24.洗扑克牌 (乱数排列)........................................................................................................................43 25.Craps 赌博游戏......................................................................................................................................45 26.约瑟夫问题 (Josephus Problem).......................................................................................................47 27.排列组合................................................................................................................................................48 28.格雷码 (Gray Code)...........................................................................................................................49 29.产生可能的集合....................................................................................................................................51 30.m 元素集合的n 个元素子集................................................................................................................54 31.数字拆解................................................................................................................................................55 32.得分排行................................................................................................................................................57 33.选择、插入、气泡排序........................................................................................................................59 34.Shell 排序法 - 改良的插入排序.........................................................................................................62 35.Shaker 排序法 - 改良的气泡排序......................................................................................................64 36.排序法 - 改良的选择排序...................................................................................................................66 37.快速排序法 (一)................................................................................................................................69 38.快速排序法 (二)................................................................................................................................71 39.快速排序法 (三)................................................................................................................................72 40.合并排序法............................................................................................................................................75 41.基数排序法............................................................................................................................................77 42.循序搜寻法 (使用卫兵)....................................................................................................................79 43.二分搜寻法 (搜寻原则的代表)........................................................................................................81 44.插补搜寻法............................................................................................................................................83 45.费氏搜寻法............................................................................................................................................85 46.稀疏矩阵................................................................................................................................................88 47.多维矩阵转一维矩阵............................................................................................................................90 48.上三角、下三角、对称矩阵................................................................................................................91 49.奇数魔方阵............................................................................................................................................93 50.4N 魔方阵.............................................................................................................................................94 51.2(2N+1) 魔方阵 ....................................................................................................................................96
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值