11-散列4 Hashing - Hard Version   (30分)

Given a hash table of size N, we can define a hash function . Suppose that the linear probing is used to solve collisions, we can easily obtain the status of the hash table with a given sequence of input numbers.

However, now you are asked to solve the reversed problem: reconstruct the input sequence from the given status of the hash table. Whenever there are multiple choices, the smallest number is always taken.

Input Specification:

Each input file contains one test case. For each test case, the first line contains a positive integer NN (1000), which is the size of the hash table. The next line contains NN integers, separated by a space. A negative integer represents an empty cell in the hash table. It is guaranteed that all the non-negative integers are distinct in the table.

Output Specification:

For each test case, print a line that contains the input sequence, with the numbers separated by a space. Notice that there must be no extra space at the end of each line.

Sample Input:

11
33 1 13 12 34 38 27 22 32 -1 21

Sample Output:

1 13 12 21 33 34 38 27 22 32

解析:如题目中的样例,假设题目中的元素在一个Hash[11]的数组中

33 % 11 = 0,Hash[0] = 33 ,因此什么事都不做;

1 % 11 = 1,Hash[1] = 1, 同上;

13 % 11 = 2,Hash[2] = 13, 同上;

12 % 11 = 1,Hash[1] != 12,说明发生了冲突,此时1和13一定在12之前进入哈希表(因为线性探测法是逐个向后找空位),所以建立<1,12>、<13, 12>这两条有向边来表明先后顺序;

后面的都类似;

而32 % 11 = 10,Hash[10] != 32,又发生了冲突,而此时已经是表的末尾,因此只能重新回到0号位依次探测空位直到8号位,因此需要建立<21, 32>、<33, 32>、<1, 32>...<22, 32>这些有向边


以上步骤是根据哈希表来建立一个有向图,对应BuildGraph函数。其中建立有向图时,结点我选择的是用下标来表示(因为不知道元素的大小),不过还是用了个HashMap数组来记录下标。

然后就是根据有向图来做一个拓扑排序,排序的时候使用set容器来存储入度为0的元素,方便找到最小的元素。



#include <cstdio>
#include <cstdlib>
#include <set>
using namespace std;
#define MAX 1000
#define INFINITY 0
int A[MAX][MAX];

void BuildGraph ( int Hash[], int N ) {
	int i, j, tmp;
	for ( i = 0; i < N; i++ ) {
		if ( Hash[i] >= 0 ) {
			tmp = Hash[i] % N; //求余数
			if ( Hash[tmp] != Hash[i]) { //如果这个位置已被占有
				for ( j = tmp; j != i; j = ( j + 1 ) % N )
					A[j][i] = 1; //位置j到i的元素都在i之前进入哈希表
			}
		}
	}
}

int TopSort( int Hash[], int HashMap[], int N , int num){
	int V, W, cnt = 0, Indegree[MAX] = {0};
	set<int> s;
	//计算各结点的入度
	for( V = 0; V < N; V++ )
		for( W = 0; W < N; W++ )
			if( A[V][W] != INFINITY )
				Indegree[W]++;	//对于有向边<V,W>累计终点W的入度
	//入度为0的入队
	for( int i = 0; i < N; i++ )
		if( Indegree[i] == 0 && Hash[i] > 0 )
			s.insert( Hash[i] );  //将大于0且入度为0的顶点放入集合,自动排序
	while( !s.empty() ) {
		V = HashMap[ *s.begin() ]; //获取最小的元素的下标
		s.erase( s.begin() );
		cnt++;
		printf("%d", Hash[V]);
		if ( cnt != num )
			printf(" ");
		for( W = 0; W < N; W++ )
			if( A[V][W] != INFINITY ) {  //<V, W>有有向边
				if( --Indegree[W] == 0 )  //去掉V后,如果W的入度为0
					s.insert( Hash[W] );
			}
	}
	if( cnt != num ) return 0;	//如果没有取出所有元素,说明图中有回路
	else return 1;
}

int main () {
	int N, Hash[1005],HashMap[100000], num = 0;
	scanf("%d", &N);
	for ( int i = 0 ;i < N; i++ ) {
		scanf("%d", &Hash[i]);
		HashMap[ Hash[i] ] = i;	//记录下标
		if ( Hash[i] > 0 ) num++; //记录哈希表中的元素个数
	}
	BuildGraph( Hash, N );
	TopSort( Hash, HashMap, N ,num );
	system("pause");
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值