题目描述:
Write a program to find the nth super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes
of size k
. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32]
is the sequence of the first 12 super ugly numbers given primes
= [2, 7, 13, 19]
of size 4.
Note:
(1) 1
is a super ugly number for any given primes
.
(2) The given numbers in primes
are in ascending order.
(3) 0 < k
≤ 100, 0 < n
≤ 106, 0 < primes[i]
< 1000.
这个题先用Ugly Number II的思路去做,超内存了:
public int nthSuperUglyNumber(int n, int[] primes) {
List<Deque<Integer>> list =new ArrayList<Deque<Integer>>();
for(int i=0;i<primes.length;i++){
Deque<Integer> queue=new ArrayDeque<Integer>();
queue.offer(1);
list.add(queue);
}
int result=0;
for(int i=0;i<n;i++){
int min=Integer.MAX_VALUE;
for(int j=0;j<list.size();j++){
min=list.get(j).peek()<min?list.get(j).peek():min;
result=min;
}
for(int j=0;j<list.size();j++){
if(list.get(j).peek()==min){
list.get(j).poll();
}
}
for(int j=0;j<list.size();j++){
list.get(j).offer(min*primes[j]);
}
}
return result;
}
然后想想又用Treeset来解,但是维护一个有序数组空间复杂度太高,超时,WTF:
public int nthSuperUglyNumber(int n, int[] primes) {
SortedSet<Integer> set=new TreeSet<Integer>();
int result=0;
set.add(1);
for(int i=0;i<n;i++){
result=set.first();
set.remove(result);
for(int j=0;j<primes.length;j++){
set.add(result*primes[j]);
}
System.out.println(set);
}
return result;
}
最后仔细考虑,上面的方法每次都是取出集合中的第一个数,完全可以将primes.length个list转换成大小为primes.length的数组:
public class Solution {
public int nthSuperUglyNumber(int n, int[] primes) {
int[] count = new int[primes.length];
int[] res = new int[n];
res[0] = 1;
for (int i = 1; i < n; i++) {
int min = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++) {
min = Math.min(min, primes[j] * res[count[j]]);
}
res[i] = min;
for (int j = 0; j < count.length; j++) {
if (res[count[j]] * primes[j] == min) {
count[j]++;
}
}
}
return res[n - 1];
}
}