题目描述:
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
还是思想非常重要。
这个题限制了时间复杂度为O(1)。又不能用除法。如果能用除法,就可以先把所有数相乘,然后依次除以每一个数,就得到结果。
牺牲空间来换取时间,那么就要用到一个辅助数组。
2种做法:
public class Solution {
public int[] productExceptSelf(int[] nums) {
if (nums == null) {
return null;
}
int len = nums.length;
int[] res = new int[len];
int[] tmp = new int[len];
tmp[0] = 1;
res[0] = 1;
for (int i = 1; i < len; i++) {
tmp[i] = tmp[i - 1] * nums[i - 1];
res[i] = tmp[i];
}
tmp[len - 1] = 1;
for (int i = len - 2; i >= 0; i--) {
tmp[i] = tmp[i + 1] * nums[i + 1];
res[i] *= tmp[i];
}
return res;
}
}
public class Solution {
public int[] productExceptSelf(int[] nums) {
int p=1;
int[] arrs=new int[nums.length];
arrs[0]=1;
for(int i=1;i<nums.length;i++){
arrs[i]=arrs[i-1]*nums[i-1];
}
for(int i=nums.length-2;i>=0;i--){
p*=nums[i+1];
arrs[i]*=p;
}
return arrs;
}
}