题目链接:https://leetcode.com/problems/edit-distance/
题目:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
思路:
c[i][j]表示word1的0~i子串和word2的0~j子串的最小编辑距离。状态转移方程:
如果sc[i]==tc[j]即最后一个字符相等 : c[i][j]=min{c[i-1][j],c[i][j-1],c[i-1][j-1]}
否则最后一个字符需要替换增加1个编辑距离:c[i][j]=min{c[i-1][j],c[i][j-1],c[i-1][j-1]+1}
算法:
- public int minDistance(String word1, String word2) {
- char sc[] = word1.toCharArray();
- char tc[] = word2.toCharArray();
- int[][] c = new int[word1.length() + 1][word2.length() + 1];
-
- for (int i = 0; i <= word1.length(); i++) {
- c[i][0] = i;
- }
- for (int j = 0; j <= word2.length(); j++) {
- c[0][j] = j;
- }
-
- for (int i = 1; i <= word1.length(); i++) {
- for (int j = 1; j <= word2.length(); j++) {
- int n1 = c[i - 1][j] + 1;
- int n2 = c[i][j - 1] + 1;
- int n3 = c[i - 1][j - 1];
- if (sc[i - 1] != tc[j - 1])
- n3++;
- c[i][j] = Math.min(n1, n2);
- c[i][j] = Math.min(c[i][j], n3);
- }
- }
- return c[word1.length()][word2.length()];
- }