LeetCode --- 二叉树的最大深度

本文介绍了一种求解二叉树最大深度的算法实现,通过递归方式遍历二叉树的左右子树,计算从根节点到最远叶子节点的最长路径上的节点数。

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树 [3,9,20,null,null,15,7],

这里写图片描述
返回它的最大深度 3 。

public class MaxDepth {

    @Test
    public void maxDepthTest() {
        Assert.assertEquals(0, maxDepth(null));
        TreeNode input = new TreeNode(1);
        input.left = new TreeNode(9);
        input.right = new TreeNode(20);
        input.right.left = new TreeNode(15);
        input.right.right = new TreeNode(7);
        Assert.assertEquals(3, maxDepth(input));
    }

    public int maxDepth(TreeNode root) {
        if (root == null) return 0;

        int leftDepth = maxDepth(root.left);
        int rigthDepth = maxDepth(root.right);

        return leftDepth > rigthDepth ? (leftDepth+1) : (rigthDepth+1);

    }

}
### LeetCode 298 二叉树最长连续序列 对于LeetCode上的编号为298的题目“二叉树中最长的连续序列”,目标是在给定二叉树中找到最长的连续递增路径长度。这里的连续意味着节点值依次增加1。 #### 解决方案概述 解决方案涉及深度优先搜索(DFS)遍历整棵树,同时跟踪当前路径是否构成连续递增序列以及该序列的长度。当遇到不满足条件的情况时,则重置计数器并继续探索其他分支[^4]。 #### Python代码实现 下面是一个基于上述思路的具体Python实现: ```python class Solution(object): def longestConsecutive(self, root): """ :type root: TreeNode :rtype: int """ def dfs(node, parent_val, cur_length): if not node: return # 如果当前节点值正好是父节点值加一,则认为找到了一个新的连续部分 if node.val == parent_val + 1: nonlocal max_length max_length = max(max_length, cur_length + 1) # 继续向下层传递更新后的参数 dfs(node.left, node.val, cur_length + 1) dfs(node.right, node.val, cur_length + 1) else: # 否则重新开始计算新的潜在连续序列 dfs(node.left, node.val, 1) dfs(node.right, node.val, 1) max_length = 0 # 初始化调用栈 dfs(root, float('-inf'), 0) return max_length ``` 此方法通过递归方式访问每一个节点,并利用`parent_val`和`cur_length`两个额外参数来帮助判断是否存在连续关系及其对应的长度变化情况。最终结果保存于全局变量`max_length`之中,在完成整个树形结构扫描之后返回作为答案。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值