memset函数用法(转)

本文详细介绍了memset函数的作用、正确使用方法以及常见的三种错误案例。通过实例演示,帮助开发者避免常见陷阱,提高代码质量。

memest原型 (please type “man memset” in your shell)

void *memset(void *s, int c, size_t n);

memset:作用是在一段内存块中填充某个给定的值,它对较大的结构体或数组进行清零操作的一种最快方法。

常见的三种错误

第一: 搞反了c 和 n的位置.

一定要记住 如果要把一个char a[20]清零, 一定是 memset(a, 0, 20)
而不是 memset(a, 20, 0)

第二: 过度使用memset, 我想这些程序员可能有某种心理阴影, 他们惧怕未经初始化的内存, 所以他们会写出这样的代码:

char buffer[20];

memset(buffer, 0, sizeof((char)*20));
strcpy(buffer, “123”);

这里的memset是多余的. 因为这块内存马上就被覆盖了, 清零没有意义.

第三: 其实这个错误严格来讲不能算用错memset, 但是它经常在使用memset的场合出现

int some_func(struct something *a){


memset(a, 0, sizeof(a));

}

问:为何要用memset置零?memset( &Address, 0, sizeof(Address));经常看到这样的用法,其实不用的话,分配数据的时候,剩余的空间也会置零的。

答:1.如果不清空,可能会在测试当中出现野值。 你做下面的试验看看结果()

char buf[5];

CString str,str1; //memset(buf,0,sizeof(buf)); for(int i = 0;i<5;i++) { str.Format(“%d “,buf[i]); str1 +=str ; } TRACE(“%s\r\n“,str1)

2.其实不然!特别是对于字符指针类型的,剩余的部分通常是不会为0的,不妨作一个试验,定义一个字符数组,并输入一串字符,如果不用memset实现清零,使用MessageBox显示出来就会有乱码(0表示NULL,如果有,就默认字符结束,不会输出后面的乱码)

问:

如下demo是可以的,能把数组中的元素值都设置成字符1,

include

include

using namespace std;
int main()
{
char a[5];
memset(a,’1’,5);
for(int i = 0;i < 5;i++)
cout< system(“pause”);
return 0;
}
而,如下程序想吧数组中的元素值设置成1,却是不可行的

include

include

using namespace std;
int main()
{
int a[5];
memset(a,1,5);//这里改成memset(a,1,5 *sizeof(int))也是不可以的
for(int i = 0;i < 5;i++)
cout< system(“pause”);
return 0;
}
问题是:

1,第一个程序为什么可以,而第二个不行,
2,不想要用for,或是while循环来初始化int a[5];能做到吗?(有没有一个像memset()这样的函数初始化)

答:

1.因为第一个程序的数组a是字符型的,字符型占据内存大小是1Byte,而memset函数也是以字节为单位进行赋值的,所以你输出没有问题。而第二个程序a是整型的,使用memset还是按字节赋值,这样赋值完以后,每个数组元素的值实际上是0x01010101即十进制的16843009。你看看你输出结果是否这样?

2.如果用memset(a,1,20);
就是对a指向的内存的20个字节进行赋值,每个都用ASCII为1的字符去填充,转为二进制后,1就是00000001,占一个字节。一个INT元素是4 字节,合一起就是1000000010000000100000001,就等于16843009,就完成了对一个INT元素的赋值了。

memset的正规用法是只能用来初始化char类型的数组的,也就是说,它只接受0x00-0xFF的赋值
然而,在大多数情况下,需要对一个double或int的数组赋一个相对很大或很小的初值

以下的赋值方式是不正确的:

memset(arr,2147483647,sizeof(arr));

但是可以用一些技巧,来得到一个差不多的最大值,比如像:

memset(arr,0x7F,sizeof(arr));

它将arr中的值全部赋为2139062143
这是用memset对int赋值所能达到的最大值

类似的还有:

memset(arr,0x80,sizeof(arr)); //set int to -2139062144
memset(arr,0x7F,sizeof(arr)); //set double to 1.38242e+306
memset(arr,0xFE,sizeof(arr)); //set double to -5.31401e+303

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
内容概要:本文围绕电力系统状态估计中的异常检测与分类展开,重点介绍基于Matlab代码实现的相关算法与仿真方法。文章详细阐述了在状态估计过程中如何识别和分类量测数据中的异常值,如坏数据、拓扑错误和参数误差等,采用包括残差分析、加权最小二乘法(WLS)、标准化残差检测等多种经典与现代检测手段,并结合实际算例验证方法的有效性。同时,文档提及多种状态估计算法如UKF、AUKF、EUKF等在负荷突变等动态场景下的应用,强调异常处理对提升电力系统运行可靠性与安全性的重要意义。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的高校研究生、科研人员及从事电力系【状态估计】电力系统状态估计中的异常检测与分类(Matlab代码实现)统自动化相关工作的工程技术人员。; 使用场景及目标:①掌握电力系统状态估计中异常数据的产生机制与分类方法;②学习并实现主流异常检测算法,提升对状态估计鲁棒性的理解与仿真能力;③服务于科研项目、课程设计或实际工程中的数据质量分析环节; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,配合电力系统状态估计的基本理论进行深入理解,重点关注异常检测流程的设计逻辑与不同算法的性能对比,宜从简单案例入手逐步过渡到复杂系统仿真。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值