【找规律】HDOJ Rikka with Chess 5630

在n×m的黑白相间棋盘上,每次选择一个矩形区域进行颜色反转,目标是将所有格子变为同一颜色。本文探讨如何通过算法找到达到此目标所需的最少反转次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



Rikka with Chess

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 351    Accepted Submission(s): 299


Problem Description
Yuta gives Rikka a chess board of size  n×m .

As we all know, on a chess board, every cell is either black or white and every two cells that share a side have different colors.

Rikka can choose any rectangle formed by board squares and perform an inversion, every white cell becomes black, and vice versa.

Rikka wants to turn all cells into the same color, please tell Rikka the minimal number of inversions she need to achieve her goal.
 

Input
The first line contains a number  T(T10)  ——The number of the testcases.

Each testcase contains two numbers  n,m(n109,m109) .
 

Output
For each testcase, print a single number which represents the answer.
 

Sample Input
      
3 1 2 2 2 3 3
 

Sample Output
      
1 2 2
 

Source
 


题意:

一个n \times mn×m的黑白相间的棋盘,每次可以选择一个矩形把其中的所有格子反色。问把所有格子变成一种颜色时的最少操作次数。

解题思路:

画几个图就能找到规律了,每次都是改变最小的行列的不同的。

AC代码:

#include <cstdio>
#include <algorithm>

using namespace std;

int main()
{
    int t;
    scanf("%d",&t);
    while(t--){
        int n,m;
        scanf("%d%d",&n,&m);
        printf("%d\n",m/2+n/2);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值