Hadoop Learning (2)

之前做的Demo太无聊了,决心改造一下~~

1.  输入格式。
之前的程序,StatMapper莫名其妙被输入了一堆key,value,应该是一种默认的输入格式,找了一下,原来是这个: org.apache.hadoop.mapred.InputFormatBase,  继承了InputFormat接口。接口里面有一个
  FileSplit[] getSplits(FileSystem fs, JobConf job, int numSplits)
    throws IOException;
看来所有输入输出都必须以文件为单位存放了,就像Lucene一样。一般输入数据都是按照行来分隔的,看来一般用这个InputFormatBase就可以了。 

2. 输入数据。
这东东本来就是用来高效处理海量数据的,于是我想到了那iHome的ActionLog....,加起来好几百个M的,符合要求吧。这里统计一下这几天,指令被调用的次数。

3. 修改程序。

StatMapper.java: 
    public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter)
            throws IOException
    {
        String[] token = value.toString().split(" ");
        String id = token[6];
        String act = token[7];
        output.collect(new UTF8(act), new LongWritable(1));
    }

StatReducer.java:
    public void reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter)
            throws IOException
    {
        long sum = 0;
        while (values.hasNext())
        {
            sum += ((LongWritable)values.next()).get();
        }
        System.out.println("Action: " + key + ", Count: " + sum);
        output.collect(key, new LongWritable(sum));
    }

4. 运行。
这回日志看清楚了:
...
060328 162626 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
060328 162626  map 8%  reduce 0%
060328 162627 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
060328 162627  map 22%  reduce 0%
060328 162628 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
060328 162628  map 37%  reduce 0%
060328 162629 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
060328 162629  map 52%  reduce 0%
060328 162630 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
060328 162631 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
060328 162631  map 80%  reduce 0%
060328 162632 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
060328 162632  map 92%  reduce 0%
060328 162632 E:/workground/opensource/hadoop-nightly/tmp/input/action_log.txt.2006-03-21:0+21357898
...
060328 162813  map 100%  reduce 0%
...
060328 162816 reduce > append > build/test/mapred/local/map_hjcxj9.out/reduce_z97f6i
060328 162816  map 100%  reduce 29%
060328 162817 reduce > append > build/test/mapred/local/map_8qdis7.out/reduce_z97f6i
060328 162817  map 100%  reduce 35%
060328 162818 reduce > append > build/test/mapred/local/map_m19cmw.out/reduce_z97f6i
060328 162818  map 100%  reduce 40%
060328 162819 reduce > append > build/test/mapred/local/map_kx1fnb.out/reduce_z97f6i
060328 162819  map 100%  reduce 44%
060328 162820 reduce > append > build/test/mapred/local/map_87oxwt.out/reduce_z97f6i
060328 162820  map 100%  reduce 49%
060328 162821 reduce > sort
060328 162822 reduce > sort
060328 162822  map 100%  reduce 50%
060328 162823 reduce > sort
060328 162824 reduce > sort
060328 162826 reduce > sort
060328 162827 reduce > sort
060328 162828 reduce > sort
060328 162830 reduce > sort
060328 162832 reduce > sort
060328 162833 reduce > sort
060328 162835 reduce > sort
060328 162837 reduce > sort
060328 162838 reduce > reduce
060328 162839  map 100%  reduce 75%
060328 162839 reduce > reduce
060328 162840  map 100%  reduce 78%
060328 162840 reduce > reduce
060328 162841  map 100%  reduce 82%
Action: ACTION, Count: 1354644
060328 162841 reduce > reduce
060328 162842  map 100%  reduce 85%
060328 162842 reduce > reduce
060328 162843  map 100%  reduce 89%
060328 162843 reduce > reduce
060328 162844  map 100%  reduce 93%
060328 162844 reduce > reduce
060328 162845  map 100%  reduce 96%
060328 162845 reduce > reduce
060328 162846 reduce > reduce
...
060328 162846  map 100%  reduce 100%
060328 162846 Job complete: job_2pn9y8

简单分析一下。首先程序用几个线程来并发处理输入,然后将第一次输出保存到临时目录下面。接着程序读取第一次输出,执行聚集操作,对Key相同的数据传输到Reducer进行处理和排序,Reducer再把输出保存到output目录下面。

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值