Time Limit: 2 second(s) | Memory Limit: 32 MB |
There is sequence 1, 12, 123, 1234, ..., 12345678910, ... . Now you are given two integers A and B, you have to find the number of integers from Ath number to Bth (inclusive) number, which are divisible by 3.
For example, let A = 3. B = 5. So, the numbers in the sequence are, 123, 1234, 12345. And 123, 12345 are divisible by 3. So, the result is 2.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains two integers A and B (1 ≤ A ≤ B < 231) in a line.
Output
For each case, print the case number and the total numbers in the sequence between Ath and Bth which are divisible by 3.
Sample Input | Output for Sample Input |
2 3 5 10 110 | Case 1: 2 Case 2: 67 |
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
int t,a,b,sum,k;
scanf("%d",&t);
k=1;
while(t--)
{
scanf("%d%d",&a,&b);
int count=(b+1-a)/3;//注意是用b+1
int m=(b+1-a)%3;
sum=count*2;
if(m==1)
{
int x=(b-1)/3;
if(x*3+1!=b)
sum++;
}
else if(m==2)
{
int x=(b-1)/3;
if(x*3+1!=b)
sum++;
int y=(b-1-1)/3;
if(y*3+1!=b-1)
sum++;
}
printf("Case %d: %d\n",k++,sum);
}
return 0;
}