Description
The problem you need to solve here is pretty simple. You are give a function f(A, n), where A is an array of integers and n is the number of elements in the array. f(A, n) is defined as follows:
long long f( int A[], int n ) { // n = size of A
long long sum = 0;
for( int i = 0; i < n; i++ )
for( int j = i + 1; j < n; j++ )
sum += A[i] - A[j];
return sum;
}
Given the array A and an integer n, and some queries of the form:
1) 0 x v (0 ≤ x < n, 0 ≤ v ≤ 106), meaning that you have to change the value of A[x] to v.
2) 1, meaning that you have to find f as described above.
Input
Input starts with an integer T (≤ 5), denoting the number of test cases.
Each case starts with a line containing two integers: n and q (1 ≤ n, q ≤ 105). The next line contains n space separated integers between 0 and 106denoting the array A as described above.
Each of the next q lines contains one query as described above.
Output
For each case, print the case number in a single line first. Then for each query-type "1" print one single line containing the value of f(A, n).
Sample Input
1
3 5
1 2 3
1
0 0 3
1
0 2 1
1
Sample Output
Case 1:
-4
0
4
Hint
Dataset is huge, use faster I/O methods.
Developed and Maintained by
JANE ALAM JAN
思路:很明显不能按照题目给的函数写,会超时,那么就只能找规律了,当i=0时,有a0-a1+a0-a2+a0-a3+.....,当i=1时,有a1-a2+a1-a3+a1+.....,观察可得发现第一个式子刚好比第二个多出来 n-i 个(a0-a1)。之后操作时要改变值时直接在之前求得的总和身上改,例如改变了 a7 增加了2 则从第8到n 个数被 a7减时结果都要多2,而从第0个到第6个减 a7 时结果都小2 。
|
|