# RandomCrop随机裁剪方式一
img_path = "D:/05深度学习笔记/Data/FirstTypeData/train/ants/0013035.jpg"
img = Image.open(img_path)
print(img)
writer = SummaryWriter("logs4")
trans_tensor = transforms.ToTensor()
img_tensor = trans_totensor(img) # 转化为张量
trans_random = transforms.RandomCrop(312) # 随即裁剪成 312×312
trans_compose_2 = transforms.Compose([trans_random, trans_tensor])
# Compose函数中后面一个参数的输入为前面一个参数的输出
writer.add_image("img_tensor", img_tensor)
for i in range(10):
img_crop = trans_compose_2(img)
writer.add_image("RandomCrop", img_crop, i)
print(img_crop.size())
writer.close()
# RandomCrop随机裁剪方式二
img_path = "D:/05深度学习笔记/Data/FirstTypeData/train/ants/0013035.jpg"
img = Image.open(img_path)
writer = SummaryWriter("logs5")
trans_tensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("img_tensor", img_tensor)
trans_random = transforms.RandomCrop((312, 100)) # 指定随即裁剪的宽和高
trans_compose_3 = transforms.Compose([trans_random, trans_tensor])
for i in range(10):
img_crop = trans_compose_3(img)
writer.add_image("RandomCrop", img_crop, i)
print(img_crop.size())
writer.close()
RandomCrop随机裁剪
最新推荐文章于 2025-04-24 07:30:00 发布