环境:Windows、CUDA8.0、CUDNN6.0、VS13、QT5.3.0
概述:
1.YOLO-V3:根据Darknet编译得到对应的yolo_cpp_dll.lib和yolo_cpp_dll.dll
C++ YOLOV3工程化下载地址:
https://download.youkuaiyun.com/download/yangjayhui/11688131
2.了解学习QT5;
3.完成QT下调用YOLO-V3,工程化便于后期应用;
步骤:
一.在VS13下新建QT工程,整个解决方案如下:

UI界面如下:

二.配置相应的环境:


将所需的dll库放入Release下:

三.配置好环境直接上代码:
(1)在Detection.h中添加以下代码:
#pragma once
#include <QtWidgets/QMainWindow>
#include "ui_Detection.h"
class Detection : public QMainWindow
{
Q_OBJECT
public:
Detection(QWidget *parent = Q_NULLPTR);
int flag = 0;
private slots :
void demo();
private:
Ui::DetectionClass ui;
};
(2)yolo_v2_class.hpp可直接复制Darknet下的,没有做任何改动;
(3)在Detection.cpp中添加以下代码:
#include "Detection.h"
#include <qfiledialog.h>
#include <iostream>
#include <fstream>
#include <windows.h>
#define OPENCV
#define GPU
#include "yolo_v2_class.hpp" //引用动态链接库中的头文件
#include <opencv2/opencv.hpp>
#include "opencv2/highgui/highgui.hpp"
using namespace std;
Detection::Detection(QWidget *parent)
: QMainWindow(parent)
{
ui.setupUi(this);
connect(ui.pushButton, SIGNAL(clicked()), this, SLOT(demo()));
}
void draw_boxes(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names,
int current_det_fps = -1, int current_cap_fps = -1)
{
int const colors[6][3] = { { 1, 0, 1 }, { 0, 0, 1 }, { 0, 1, 1 }, { 0, 1, 0 }, { 1, 1, 0 }, { 1, 0, 0 } };
for (auto &i : result_vec) {
cv::Scalar color = obj_id_to_color(i.obj_id);
cv::rectangle(mat_img, cv::Rect(i.x, i.y, i.w, i.h), color, 2);
if (obj_names.size() > i.obj_id) {
std::string obj_name = obj_names[i.obj_id];
if (i.track_id > 0) obj_name += " - " + std::to_string(i.track_id);
cv::Size const text_size = getTextSize(obj_name, cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, 2, 0);
int const max_width = (text_size.width > i.w + 2) ? text_size.width : (i.w + 2);
cv::rectangle(mat_img, cv::Point2f(std::max((int)i.x - 1, 0), std::max((int)i.y - 30, 0)),
cv::Point2f(std::min((int)i.x + max_width, mat_img.cols - 1), std::min((int)i.y, mat_img.rows - 1)),
color, CV_FILLED, 8, 0);
putText(mat_img, obj_name, cv::Point2f(i.x, i.y - 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(0, 0, 0), 2);
}
}
if (current_det_fps >= 0 && current_cap_fps >= 0) {
std::string fps_str = "FPS detection: " + std::to_string(current_det_fps) + " FPS capture: " + std::to_string(current_cap_fps);
putText(mat_img, fps_str, cv::Point2f(10, 20), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(50, 255, 0), 2);
}
}
std::vector<std::string> objects_names_from_file(std::string const filename) {
std::ifstream file(filename);
std::vector<std::string> file_lines;
if (!file.is_open()) return file_lines;
for (std::string line; getline(file, line);) file_lines.push_back(line);
std::cout << "object names loaded \n";
return file_lines;
}
void Detection::demo()
{
std::string names_file = "D://darknet//yolodemo//cfg//surface//surface.names";
std::string cfg_file = "D://darknet//yolodemo//cfg//surface//yolov3-voc-surface.cfg";
std::string weights_file = "D://darknet//yolodemo//cfg//surface//yolov3-voc-surface_24000.weights";
Detector detector(cfg_file, weights_file, 1); //初始化检测器
std::vector<std::string> obj_names;
std::ifstream ifs(names_file.c_str());
std::string line;
while (getline(ifs, line)) obj_names.push_back(line);
cv::Mat frame;
QString filename;
filename = QFileDialog::getOpenFileName(this, tr("选择图片"), "", tr("Images(*.png *.bmp *.jpg)"));
string str = filename.toStdString();
frame = cv::imread(str);
double t1 = GetTickCount();
std::vector<bbox_t> result_vec = detector.detect(frame);
for (auto &i : result_vec)
{
cv::Scalar color = obj_id_to_color(i.obj_id);
cv::rectangle(frame, cv::Rect(i.x, i.y, i.w, i.h), color, 2);
}
double t2 = GetTickCount()-t1;
QString timecost = QString::number(t2);
ui.text_time->setText(timecost);
QImage img1 = QImage((const unsigned char*)(frame.data), frame.cols, frame.rows, frame.cols*frame.channels(), QImage::Format_RGB888);
img1 = img1.scaled(ui.label_image->size(), Qt::IgnoreAspectRatio, Qt::SmoothTransformation);
ui.label_image->setPixmap(QPixmap::fromImage(img1));
}
(4)QT界面如下:左边可显示结果图

(5)整个工程的下载地址:
https://download.youkuaiyun.com/download/yangjayhui/11688011
四.总结:
1.主要是为了了解QT的机制;
2.将YOLO-V3 工程化,便于应用;

本文档介绍了在Windows系统中,使用CUDA8.0、CUDNN6.0、VS13和QT5.3.0环境,如何将YOLO-V3模型与Darknet编译为动态库,并在QT工程中进行调用实现图片检测。详细步骤包括新建QT工程、配置环境、添加代码以及展示检测结果。通过这个过程,旨在理解QT的工作原理并将YOLO-V3模型工程化,以便后续实际应用。
652





