Scaena Felix 5479 (栈)

本文深入探讨了编程中常见的逻辑问题解决策略,从基础的条件判断、循环到更复杂的算法设计,包括排序、搜索等,旨在帮助开发者理解和掌握高效编程技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Scaena Felix

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 114    Accepted Submission(s): 58


Problem Description
Given a parentheses sequence consist of '(' and ')', a modify can filp a parentheses, changing '(' to ')' or ')' to '('.

If we want every not empty <b>substring</b> of this parentheses sequence not to be "paren-matching", how many times at least to modify this parentheses sequence?

For example, "()","(())","()()" are "paren-matching" strings, but "((", ")(", "((()" are not.

Input
The first line of the input is a integer T , meaning that there are T test cases.

Every test cases contains a parentheses sequence S only consists of '(' and ')'.

1|S|1,000 .

Output
For every test case output the least number of modification.

Sample Input
  
  
3 () (((( (())

Sample Output
  
  
1 0 2
 
#include<stdio.h>
#include<string.h>
#include<stack>
#include<algorithm>
using namespace std;
char s[1010];
int main()
{
	int t,l,m;
	scanf("%d",&t);
	while(t--)
	{
		m=0;
		scanf("%s",s);
		l=strlen(s);
		stack<char>q;
		for(int i=0;i<l;i++)
		{
			if(s[i]=='(')
				q.push(s[i]);
			else
			{
				if(!q.empty())
				{
					q.pop();
					m++;
				}
			}
		}
		printf("%d\n",m);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值