Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 142588 Accepted Submission(s): 34685
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
刚开始以为是简单的递归,所以尝试了一下:
#include<stdio.h>
int f(int a, int b, int n){
if(n == 1){
return 1;
} else if(n == 2){
return 1;
} else {
return (a*f(a, b, n-1) + b*f(a, b, n-2) ) % 7;
}
}
int main()
{
int a1, b1, m;
while(scanf("%d%d%d", &a1, &b1, &m)!=EOF){
if(a1==0 && b1==0 && m==0){
break;
} else {
printf("%d\n", f(a1, b1, m));
}
}
return 0;
}
由于题目所给m之取值范围较大,会导致超时:
于是,我将f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7:看成f(n) = k*f(n-1)%7,又f(1)=1, 可以得出:0-6是一个周期(即:k以【0,6】作为一个周期),则:A、B都是以[0,6]为一个周期,存在7种情况,由排列组合7×7 =49
#include<stdio.h>
int f(int a, int b, int n){
if(n == 1){
return 1;
} else if(n == 2){
return 1;
} else {
return (a*f(a, b, n-1) + b*f(a, b, n-2) ) % 7;
}
}
int main()
{
int a1, b1, m;
while(scanf("%d%d%d", &a1, &b1, &m)!=EOF){
if(a1==0 && b1==0 && m==0){
break;
} else {
printf("%d\n", f(a1, b1, m%49));
}
}
return 0;
}