Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 11231 Accepted Submission(s): 3691
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jxor ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jxor ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
#include<stdio.h>
#include<string.h>
#define size 1000100
#define INF 1<<30
int dp[2][size];
int num[size];
int k,n;
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int i,j,l,ans;
while(scanf("%d %d",&k,&n))
{
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++)
{
scanf("%d",&num[i]);
dp[1][i]=dp[0][i]=0;
}
for(i=1;i<=k;i++)
{
ans=-INF;
for(j=i;j<=n;j++)//前j-1个取i段;前j-1个取i-1段(上一状态)
{ //接着放 ,自己另起一段,此时dp[0][j-1]中存的还是前j-1个数组成i-1的最大值
dp[1][j]=max(dp[1][j-1],dp[0][j-1])+num[j];//dp[1]就是已经把这个数放了
dp[0][j-1]=ans;//用过再更新,变成前j-1个数存i段的最大和,不影响下一层,到下一层就是j-2了
if(ans<dp[1][j])//若这个数不该放,前面dp[1][j]加上了num[j],也不改变ans的值
{
ans=dp[1][j]; //ans存的是i段的最优结果,把每次的最大和存在dp[0]中
}
}
}
printf("%d\n",ans);
}
return 0;
}
本文深入解析大数据开发、AI音视频处理领域的关键技术和应用实例,旨在为开发者提供全面的技术指导与实践建议。

被折叠的 条评论
为什么被折叠?



