题目
Given a binary tree, return the bottom-up level order traversal of its nodes’ values. (ie, from left to right, level by level from leaf to root).
For example:
Given binary tree [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
return its bottom-up level order traversal as:
[
[15,7],
[9,20],
[3]
]
总结
此题首先想到的是用层次遍历,先贴上我的代码:
class Solution:
def levelOrderBottom(self, root):
"""
:type root: TreeNode
:rtype: List[List[int]]
"""
if not root:
return []
result = [[root.val]]
queue = [root]
temp = []
while True:
if queue:
node = queue.pop(0)
if node.left:
temp.append(node.left)
if node.right:
temp.append(node.right)
else:
if temp:
result.insert(0, [n.val for n in temp])
queue += temp
temp = []
else:
break
return result
我的代码看起来比较乱,是用queue保存当前层的节点,temp保存下一层的节点。然后在每次当前层queue读取完后把下一层的所有值[n.val for n in temp]
插入在result前面。
分析
代码的缺陷:
用了多余的空间temp,其实可以只用一个queue保存所有数据,是用两个循环,第一个循环用于进入下一层,第二个循环用于遍历当前queue所有的node
参考代码:
public List<List<Integer>> levelOrderBottom(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if(root==null) return result;
Queue<TreeNode> q = new LinkedList<>();
q.add(root);
while(q.size()>0){
List<Integer> list = new ArrayList<>();
int size = q.size();
for(int i=0; i<size; i++){
TreeNode node = q.poll();
list.add(node.val);
if(node.left!=null) q.add(node.left);
if(node.right!=null) q.add(node.right);
}
result.add(0,list);
}
return result;
}
还可以是用深度优先遍历,通过depth记录要插入的链表位置
参考代码:
public class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<TreeNode>();
List<List<Integer>> wrapList = new LinkedList<List<Integer>>();
if(root == null) return wrapList;
queue.offer(root);
while(!queue.isEmpty()){
int levelNum = queue.size();
List<Integer> subList = new LinkedList<Integer>();
for(int i=0; i<levelNum; i++) {
if(queue.peek().left != null) queue.offer(queue.peek().left);
if(queue.peek().right != null) queue.offer(queue.peek().right);
subList.add(queue.poll().val);
}
wrapList.add(0, subList);
}
return wrapList;
}
}