常见知识点:
a) C++特性(1、抽象;2、封装;3、继承;4、多态)
b) C++的访问权限,friend使用
1)友员函数不属于类,但是可以访问类的私有数据,定义函数时无需在类名前加“类名::”,友员函数一般都带有一个该类的入口函数(没有this指针)
2)类的成员函数成为友员函数
3)类成为友员类
c) 构造函数(重载,有缺省的构造函数,是特殊的成员函数不能显示调用)、析构函数(不重载,无参数)、拷贝构造函数(缺省的拷贝构造函数,调用法,赋值法,三种常见类型(const type &a,return p; 形参))、浅拷贝和深拷贝(含有指针类型的数据)
d) Inline,new/delete(运算符),malloc/free(库函数),注释,强制类型转换,I/O,缺省值,作用域::,引用(别名,定义以后不能更改)与指针的区别,各种对象的生存时间(全局,局部,静态,动态)
malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的“对象”没有构造与析构的过程,对它们而言malloc/free和new/delete是等价的。
既然new/delete的功能完全覆盖了malloc/free,为什么C++不把malloc/free淘汰出局呢?这是因为C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。
如果用free释放“new创建的动态对象”,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存”,结果也会导致程序出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。
delete与 delete []区别
delete只会调用一次析构函数,而delete[]会调用每一个成员的析构函数。在More Effective C++中有更为详细的解释:“当delete操作符用于数组时,它为每个数组元素调用析构函数,然后调用operatordelete来释放内存。”delete与New配套,delete []与new []配套
MemTest* mTest1=new MemTest[10];
MemTest* mTest2=new MemTest;
int* pInt1=newint[10];
int* pInt2=newint;
delete[] pInt1; //-1-
delete[] pInt2; //-2-
delete[] mTest1;//-3-
delete[] mTest2;//-4-
在-4-处报错。
这就说明:对于内建简单数据类型,delete和delete[]功能是相同的。对于自定义的复杂数据类型,delete和delete[]不能互用。delete[]删除一个数组,delete删除一个指针简单来说,用new分配的内存用delete删除用new[]分配的内存用delete[]删除delete[]会调用数组元素的析构函数。内部数据类型没有析构函数,所以问题不大。如果你在用delete时没用括号,delete就会认为指向的是单个对象,否则,它就会认为指向的是一个数组。
e) 函数重载
f) 运算符重载
g) 模板(函数模板,类模板)
经典问题:
1) 引用和指针区别
答:引用就是某个目标变量的“别名”(alias),对应用的操作与对变量直接操作效果完全相同。申明一个引用的时候,切记要对其进行初始化。引用声明完毕后,相当于目标变量名有两个名称,即该目标原名称和引用名,不能再把该引用名作为其他变量名的别名。声明一个引用,不是新定义了一个变量,它只表示该引用名是目标变量名的一个别名,它本身不是一种数据类型,因此引用本身不占存储单元,系统也不给引用分配存储单元。不能建立数组的引用。
2) Const int 存储地方,何时分配,全局和局部的区别
3) Static int 何时分配内存,extern的用法
答:静态数据成员和静态变量一样,在编译时创建并初始化;
4) Volatile使用
5) Static int fun();
6) 函数指针
7) Class A {
};存储位置,new后其中的方法在内存有几份,函数写在类定义的内部和外部的区别
答:当定义一个类的若干对象后,每个对象都会有属于自己的数据成员,但是,所有对象的成员函数代码却只有一份,C++中成员函数是通过this指针来实现对该对象的数据成员进行处理;
8) C++内存分配方式:
a) 编译,哪些在编译时候分配
b) 运行,哪些在运行时候分配
9) C++内存区:
a) 堆
b) 栈
c) 全局区/静态区
d) 常量区
f) 自由存储区(C语言中没有此叫法)
e) 代码区
10) Int *p[3]和int (*p)[3]区别
11)this 指针(const指针,不能在程序中修改它或者给它赋值;this指针是一个局部数据,它的作用域仅在一个对象的内部。)
12)对象数组初始化赋值
13)指向类的成员的指针(指向数据成员的指针和指向成员函数的指针)
答:通过初始化表进行赋值;
14)对象成员
a)含有对象成员的类,其构造函数和不含对象成员的构造函数有所不同,
X::X(形参表0):对象成员名1(形参表1),对象成员名i(形参表i)
{
}
15)内存分配方式
内存分配方式有三种:
(1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
(2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
(3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。
16).在C++程序中调用被C 编译器编译后的函数,为什么要加extern “C”?
首先,作为extern是C/C++语言中表明函数和全局变量作用范围(可见性)的关键字,该关键字告诉编译器,其声明的函数和变量可以在本模块或其它模块中使用。
通常,在模块的头文件中对本模块提供给其它模块引用的函数和全局变量以关键字extern声明。例如,如果模块B欲引用该模块A中定义的全局变量和函数时只需包含模块A的头文件即可。这样,模块B中调用模块A中的函数时,在编译阶段,模块B虽然找不到该函数,但是并不会报错;它会在连接阶段中从模块A编译生成的目标代码中找到此函数
extern "C"是连接申明(linkage declaration),被extern "C"修饰的变量和函数是按照C语言方式编译和连接的,来看看C++中对类似。
C的函数是怎样编译的:
作为一种面向对象的语言,C++支持函数重载,而过程式语言C则不支持。函数被C++编译后在符号库中的名字与C语言的不同。例如,假设某个函数的原型为:
void foo( int x, int y );
该函数被C编译器编译后在符号库中的名字为_foo,而C++编译器则会产生像_foo_int_int之类的名字(不同的编译器可能生成的名字不同,但是都采用了相同的机制,生成的新名字称为“mangled name”)。
_foo_int_int 这样的名字包含了函数名、函数参数数量及类型信息,C++就是靠这种机制来实现函数重载的。例如,在C++中,函数void foo( int x, int y )与void foo( int x, float y )编译生成的符号是不相同的,后者为_foo_int_float。
同 样地,C++中的变量除支持局部变量外,还支持类成员变量和全局变量。用户所编写程序的类成员变量可能与全局变量同名,我们以"."来区分。而本质上,编译器在进行编译时,与函数的处理相似,也为类中的变量取了一个独一无二的名字,这个名字与用户程序中同名的全局变量名字不同。
未加extern "C"声明时的连接方式
假设在C++中,模块A的头文件如下:
#ifndef MODULE_A_H
#define MODULE_A_H
int foo( int x, int y );
#endif
在模块B中引用该函数:
#include "moduleA.h"
foo(2,3);
实际上,在连接阶段,连接器会从模块A生成的目标文件moduleA.obj中寻找_foo_int_int这样的符号!
加extern "C"声明后的编译和连接方式
加extern "C"声明后,模块A的头文件变为:
#ifndef MODULE_A_H
#define MODULE_A_H
extern"C"int foo(int x, int y );
#endif
在模块B的实现文件中仍然调用foo( 2,3 ),其结果是:
(1)模块A编译生成foo的目标代码时,没有对其名字进行特殊处理,采用了C语言的方式;
(2)连接器在为模块B的目标代码寻找foo(2,3)调用时,寻找的是未经修改的符号名_foo。
如果在模块A中函数声明了foo为extern "C"类型,而模块B中包含的是extern int foo( int x, int y ) ,则模块B找不到模块A中的函数;反之亦然。
所以,可以用一句话概括extern “C”这个声明的真实目的(任何语言中的任何语法特性的诞生都不是随意而为的,来源于真实世界的需求驱动。我们在思考问题时,不能只停留在这个语言是怎么做的,还要问一问它为什么要这么做,动机是什么,这样我们可以更深入地理解许多问题):实现C++与C及其它语言的混合编程。
明白了C++中extern "C"的设立动机,我们下面来具体分析extern "C"通常的使用技巧:
extern "C"的惯用法
(1)在C++中引用C语言中的函数和变量,在包含C语言头文件(假设为cExample.h)时,需进行下列处理:
{
#include"cExample.h"
}
而在C语言的头文件中,对其外部函数只能指定为extern类型,C语言中不支持extern "C"声明,在.c文件中包含了extern"C"时会出现编译语法错误。
C++引用C函数例子工程中包含的三个文件的源代码如下:
#ifndef C_EXAMPLE_H
#define C_EXAMPLE_H
externint add(int x,inty);
#endif
#include "cExample.h"
int add( int x, int y )
{
return x + y;
}
extern"C"
{
#include"cExample.h"
}
int main(int argc,char* argv[])
{
add(2,3);
return0;
}
如果C++调用一个C语言编写的.DLL时,当包括.DLL的头文件或声明接口函数时,应加extern "C" { }。
(2)在C中引用C++语言中的函数和变量时,C++的头文件需添加extern "C",但是在C语言中不能直接引用声明了extern "C"的该头文件,应该仅将C文件中将C++中定义的extern"C"函数声明为extern类型。
C引用C++函数例子工程中包含的三个文件的源代码如下:
#ifndef CPP_EXAMPLE_H
#define CPP_EXAMPLE_H
extern"C"int add(int x, int y );
#endif
#include"cppExample.h"
int add( int x, int y )
{
return x + y;
}
/* C实现文件 cFile.c
/* 这样会编译出错:#i nclude "cExample.h" */
externint add(int x, int y );
int main( int argc, char* argv[] )
{
add( 2, 3 );
return0;
}