Hadoop的HA高可用(可行)

本文详细介绍了Hadoop HA高可用集群的规划与搭建过程,包括Zookeeper集群配置、Hadoop集群安装、环境变量设置、免密码登录配置、主机名配置、Zookeeper与Hadoop集群配置细节、日志路径设定、资源管理参数调整、JournalNode启动、HDFS格式化、ResourceManager高可用配置等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadoop的HA高可用(可行)

Hadoop的HA高可用(可行)

一、集群的规划

Zookeeper集群

192.168.116.121192.168.116.122192.168.116.123
hsiehchou121hsiehchou122hsiehchou123

Hadoop集群

192.168.116.121192.168.116.122192.168.116.123192.168.116.124
hsiehchou121hsiehchou122hsiehchou123hsiehchou124
NameNode1NameNode2DataNode1DataNode2
ResourceManager1ResourceManager2NodeManager1NodeManager2
JournalnodeJournalnode

二、准备工作

1、安装JDK
2、配置环境变量
3、配置免密码登录
4、配置主机名

三、配置Zookeeper(在192.168.116.121安装)

在主节点(hsiehchou121)上配置ZooKeeper

1、配置/root/hd/zookeeper-3.4.10/conf/zoo.cfg文件
dataDir=/root/hd/zookeeper-3.4.10/zkData
+++++++++++++++zkconfig+++++++++++++++++
server.1=hsiehchou121:2888:3888
server.2=hsiehchou122:2888:3888
server.3=hsiehchou123:2888:3888
2、在/root/training/zookeeper-3.4.6/tmp目录下创建一个myid的空文件

echo 1 > /root/hd/zookeeper-3.4.10/tmp/myid

3、将配置好的zookeeper拷贝到其他节点,同时修改各自的myid文件

scp -r /root/hd/zookeeper-3.4.10/ hsiehchou122:/root/hd
scp -r /root/hd/zookeeper-3.4.10/ hsiehchou123:/root/hd

四、安装Hadoop集群(在hsiehchou121上安装)

1、修改hadoo-env.sh
export JAVA_HOME=/root/hd/jdk1.8.0_192
2、修改core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为mycluster -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/root/hd/hadoop-2.8.4/tmp</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>hsiehchou121:2181,hsiehchou122:2181,hsiehchou123:2181</value>
</property>
</configuration>
3、修改hdfs-site.xml(配置这个nameservice中有几个namenode)
<configuration>
<!--指定hdfs的nameservice为mycluster,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<!-- mycluster下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>hsiehchou121:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>hsiehchou121:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>hsiehchou122:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>hsiehchou122:50070</value>
</property>
<!-- 指定NameNode的日志在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hsiehchou121:8485;hsiehchou122:8485;/mycluster</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/root/hd/hadoop-2.8.4/journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
4、修改mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
5、修改yarn-site.xml
<configuration>
<!-- 开启RM高可靠 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarncluster</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hsiehchou121</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hsiehchou122</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hsiehchou121:2181,hsiehchou122:2181,hsiehchou123:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>32768</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>32768</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>4096</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>24</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/tmp/yarn-logs</value>
</property>
</configuration>
6、修改slaves

hsiehchou123
hsiehchou124

7、将配置好的hadoop拷贝到其他节点

scp -r /root/hd/hadoop-2.8.4/ root@hsiehchou122:/root/hd/
scp -r /root/hd/hadoop-2.8.4/ root@hsiehchou123:/root/hd/
scp -r /root/hd/hadoop-2.8.4/ root@hsiehchou124:/root/hd/

五、启动Zookeeper集群

1、格式化zookeeper

[root@hsiehchou121 hadoop-2.8.4]# hdfs zkfc -formatZK

2、启动Zookeeper集群

[root@hsiehchou121 hadoop-2.8.4]# zkServer.sh start
[root@hsiehchou122 hadoop-2.8.4]# zkServer.sh start
[root@hsiehchou123 hadoop-2.8.4]# zkServer.sh start

六、在和hsiehchou122上启动journalnode

hadoop-daemon.sh start journalnode

七、格式化HDFS(在hsiehchou121上执行)

1. 格式化zookeeper

[root@hsiehchou121 hadoop-2.8.4]# hdfs zkfc -formatZK

2、启动hdfs

1)在各个JournalNode节点上,输入以下命令启动journalnode服务
[root@hsiehchou121 hadoop-2.8.4]# sbin/hadoop-daemon.sh start journalnode
2)在[nn1]上,对其进行格式化,并启动
[root@hsiehchou121 hadoop-2.8.4]# bin/hdfs namenode -format
[root@hsiehchou121 hadoop-2.8.4]# sbin/hadoop-daemon.sh start namenode
3)在[nn2]上,同步nn1的元数据信息
[root@hsiehchou121 hadoop-2.8.4]# bin/hdfs namenode -bootstrapStandby

八、在hsiehchou121上启动Hadoop集群

[root@hsiehchou121 hadoop-2.8.4]# start-all.sh

日志
This script is Deprecated. Instead use start-dfs.sh and start-yar
Starting namenodes on [hsiehchou121 hsiehchou122]
hsiehchou121: starting namenode, logging to /root/hd/hadoop-2.8.4-hsiehchou121.out
hsiehchou122: starting namenode, logging to /root/hd/hadoop-2.8.4-hsiehchou122.out
hsiehchou124: starting datanode, logging to /root/hd/hadoop-2.8.4-hsiehchou124.out
hsiehchou123: starting datanode, logging to /root/hd/hadoop-2.8.4-hsiehchou123.out
Starting journal nodes [hsiehchou121 hsiehchou122 ]
hsiehchou121: starting journalnode, logging to /root/hd/hadoop-2.alnode-hsiehchou121.out
hsiehchou122: starting journalnode, logging to /root/hd/hadoop-2.alnode-hsiehchou122.out
Starting ZK Failover Controllers on NN hosts [hsiehchou121 hsiehc
hsiehchou121: starting zkfc, logging to /root/hd/hadoop-2.8.4/logou121.out
hsiehchou122: starting zkfc, logging to /root/hd/hadoop-2.8.4/logou122.out
starting yarn daemons
starting resourcemanager, logging to /root/hd/hadoop-2.8.4/logs/ysiehchou121.out
hsiehchou123: starting nodemanager, logging to /root/hd/hadoop-2.ager-hsiehchou123.out
hsiehchou124: starting nodemanager, logging to /root/hd/hadoop-2.ager-hsiehchou124.out

hsiehchou122上的ResourceManager需要单独启动
命令
[root@hsiehchou121 hadoop-2.8.4]# ./sbin/yarn-daemon.sh start resourcemanager

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hsiehchou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值