import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import gensim
import matplotlib as mpl
# 若要显示中文字体则取消注释下面两行
# mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定中文字体
# mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
def plot_with_labels(low_dim_embs, labels, filename): # 绘制词向量图
assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings'
print('绘制词向量中......')
plt.figure(figsize=(10, 10)) # in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y) # 画点,对应low_dim_embs中每个词向量
plt.
利用TSNE将word2vec词向量降维并显示
最新推荐文章于 2025-05-17 09:32:27 发布