- axis=0:在第一维操作
- axis=1:在第二维操作
- axis=-1:在最后一维操作
- 以
np.argmax()
函数为例:
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> np.argmax(a,axis = 0) #返回尺寸(3,4)
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])
>>> np.argmax(a,axis = 1) #返回尺寸(2,4)
array([[2, 2, 2, 2],
[2, 2, 2, 2]])
>>> np.argmax(a,axis = -1) #返回尺寸(2,3)
array([[3, 3, 3],
[3, 3, 3]])