分布式定时任务调度技术选型

本文对比分析了Quartz、TBSchedule、elastic-job、Saturn和xxl-job等分布式定时任务调度系统的优缺点,从适用场景、功能特性、学习成本及扩展性等方面进行了深入探讨。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

场景:

  1.每天定时爬取网站信息

  2.交易系统每天定时跑批处理业务

  3. 消息中心触发发短信消息

  4. 每天凌晨定时做数据同步处理

定时任务

方案有很多种,可以通过shell 驱动定时作业跑业务逻辑代码,可以通过DB的job作业

 

选型:

  • Quartz:Java事实上的定时任务标准。但Quartz关注点在于定时任务而非数据,并无一套根据数据处理而定制化的流程。虽然Quartz可以基于数据库实现作业的高可用,但缺少分布式并行调度的功能
  • TBSchedule:阿里早期开源的分布式任务调度系统。代码略陈旧,使用timer而非线程池执行任务调度。众所周知,timer在处理异常状况时是有缺陷的。而且TBSchedule作业类型较为单一,只能是获取/处理数据一种模式。还有就是文档缺失比较严重
  • elastic-job:当当开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,实现任务高可用以及分片,目前是版本2.15,并且可以支持云开发
  • Saturn:是唯品会自主研发的分布式的定时任务的调度平台,基于当当的elastic-job 版本1开发,并且可以很好的部署到docker容器上。
  • xxl-job: 是大众点评员工徐雪里于2015年发布的分布式任务调度平台,是一个轻量级分布式任务调度框架,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。

总结:

共同点: E-Job和X-job都有广泛的用户基础和完整的技术文档,都能满足定时任务的基本功能需求。
不同点
X-Job 侧重的业务实现的简单和管理的方便,学习成本简单,失败策略和路由策略丰富。推荐使用在“用户基数相对少,服务器数量在一定范围内”的情景下使用
E-Job 关注的是数据,增加了弹性扩容和数据分片的思路,以便于更大限度的利用分布式服务器的资源。但是学习成本相对高些,推荐在“数据量庞大,且部署服务器数量较多”时使用

转载出处:http://www.expectfly.com/2017/08/15/%E5%88%86%E5%B8%83%E5%BC%8F%E5%AE%9A%E6%97%B6%E4%BB%BB%E5%8A%A1%E6%96%B9%E6%A1%88%E6%8A%80%E6%9C%AF%E9%80%89%E5%9E%8B

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值